Search results

1 – 10 of 774
Open Access
Article
Publication date: 27 December 2021

Nengchao Lyu, Yugang Wang, Chaozhong Wu, Lingfeng Peng and Alieu Freddie Thomas

An individual’s driving style significantly affects overall traffic safety. However, driving style is difficult to identify due to temporal and spatial differences and scene…

1566

Abstract

Purpose

An individual’s driving style significantly affects overall traffic safety. However, driving style is difficult to identify due to temporal and spatial differences and scene heterogeneity of driving behavior data. As such, the study of real-time driving-style identification methods is of great significance for formulating personalized driving strategies, improving traffic safety and reducing fuel consumption. This study aims to establish a driving style recognition framework based on longitudinal driving operation conditions (DOCs) using a machine learning model and natural driving data collected by a vehicle equipped with an advanced driving assistance system (ADAS).

Design/methodology/approach

Specifically, a driving style recognition framework based on longitudinal DOCs was established. To train the model, a real-world driving experiment was conducted. First, the driving styles of 44 drivers were preliminarily identified through natural driving data and video data; drivers were categorized through a subjective evaluation as conservative, moderate or aggressive. Then, based on the ADAS driving data, a criterion for extracting longitudinal DOCs was developed. Third, taking the ADAS data from 47 Kms of the two test expressways as the research object, six DOCs were calibrated and the characteristic data sets of the different DOCs were extracted and constructed. Finally, four machine learning classification (MLC) models were used to classify and predict driving style based on the natural driving data.

Findings

The results showed that six longitudinal DOCs were calibrated according to the proposed calibration criterion. Cautious drivers undertook the largest proportion of the free cruise condition (FCC), while aggressive drivers primarily undertook the FCC, following steady condition and relative approximation condition. Compared with cautious and moderate drivers, aggressive drivers adopted a smaller time headway (THW) and distance headway (DHW). THW, time-to-collision (TTC) and DHW showed highly significant differences in driving style identification, while longitudinal acceleration (LA) showed no significant difference in driving style identification. Speed and TTC showed no significant difference between moderate and aggressive drivers. In consideration of the cross-validation results and model prediction results, the overall hierarchical prediction performance ranking of the four studied machine learning models under the current sample data set was extreme gradient boosting > multi-layer perceptron > logistic regression > support vector machine.

Originality/value

The contribution of this research is to propose a criterion and solution for using longitudinal driving behavior data to label longitudinal DOCs and rapidly identify driving styles based on those DOCs and MLC models. This study provides a reference for real-time online driving style identification in vehicles equipped with onboard data acquisition equipment, such as ADAS.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

Content available
Book part
Publication date: 18 April 2018

Abstract

Details

Safe Mobility: Challenges, Methodology and Solutions
Type: Book
ISBN: 978-1-78635-223-1

Open Access
Article
Publication date: 29 November 2019

Kai Yu, Liqun Peng, Xue Ding, Fan Zhang and Minrui Chen

Basic safety message (BSM) is a core subset of standard protocols for connected vehicle system to transmit related safety information via vehicle-to-vehicle (V2V) and…

1349

Abstract

Purpose

Basic safety message (BSM) is a core subset of standard protocols for connected vehicle system to transmit related safety information via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). Although some safety prototypes of connected vehicle have been proposed with effective strategies, few of them are fully evaluated in terms of the significance of BSM messages on performance of safety applications when in emergency.

Design/methodology/approach

To address this problem, a data fusion method is proposed to capture the vehicle crash risk by extracting critical information from raw BSMs data, such as driver volition, vehicle speed, hard accelerations and braking. Thereafter, a classification model based on information-entropy and variable precision rough set (VPRS) is used for assessing the instantaneous driving safety by fusing the BSMs data from field test, and predicting the vehicle crash risk level with the driver emergency maneuvers in the next short term.

Findings

The findings and implications are discussed for developing an improved warning and driving assistant system by using BSMs messages.

Originality/value

The findings of this study are relevant to incorporation of alerts, warnings and control assists in V2V applications of connected vehicles. Such applications can help drivers identify situations where surrounding drivers are volatile, and they may avoid dangers by taking defensive actions.

Details

Journal of Intelligent and Connected Vehicles, vol. 2 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 24 December 2021

Lishengsa Yue, Mohamed Abdel-Aty and Zijin Wang

This study aims to evaluate the influence of connected and autonomous vehicle (CAV) merging algorithms on the driver behavior of human-driven vehicles on the mainline.

Abstract

Purpose

This study aims to evaluate the influence of connected and autonomous vehicle (CAV) merging algorithms on the driver behavior of human-driven vehicles on the mainline.

Design/methodology/approach

Previous studies designed their merging algorithms mostly based on either the simulation or the restricted field testing, which lacks consideration of realistic driving behaviors in the merging scenario. This study developed a multi-driver simulator system to embed realistic driving behavior in the validation of merging algorithms.

Findings

Four types of CAV merging algorithms were evaluated regarding their influences on driving safety and driving comfort of the mainline vehicle platoon. The results revealed significant variation of the algorithm influences. Specifically, the results show that the reference-trajectory-based merging algorithm may outperform the social-psychology-based merging algorithm which only considers the ramp vehicles.

Originality/value

To the best of the authors’ knowledge, this is the first time to evaluate a CAV control algorithm considering realistic driver interactions rather than by the simulation. To achieve the research purpose, a novel multi-driver driving simulator was developed, which enables multi-drivers to simultaneously interact with each other during a virtual driving test. The results are expected to have practical implications for further improvement of the CAV merging algorithm.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 25 December 2023

James Kanyepe and Nyarai Kasambuwa

The purpose of this study is to investigate the influence of institutional dynamics on road accidents and whether this relationship is moderated by information and communication…

Abstract

Purpose

The purpose of this study is to investigate the influence of institutional dynamics on road accidents and whether this relationship is moderated by information and communication technology (ICT).

Design/methodology/approach

The study adopted a quantitative approach with 133 respondents. Research hypotheses were tested in AMOS version 21. In addition, moderated regression analysis was used to test the moderating role of ICT on the relationship between institutional dynamics and road accidents.

Findings

The results show that vehicle maintenance, policy enforcement, safety culture, driver training and driver management positively influence road accidents. Moreover, the study established that ICT moderates the relationship between institutional dynamics and road accidents.

Practical implications

The results of this study serve as a practical guideline for policymakers in the road haulage sector. Managers may gain insights on how to design effective interventions to reduce road accidents.

Originality/value

This research contributes to the existing body of knowledge by exploring previously unexplored moderating paths in the relationship between institutional dynamics and road accidents. By highlighting the moderating role of ICT, the study sheds new light on the institutional dynamics that influence road accidents in the context of road haulage companies.

Details

Journal of Humanities and Applied Social Sciences, vol. 6 no. 1
Type: Research Article
ISSN: 2632-279X

Keywords

Content available
Book part
Publication date: 20 June 2017

David Shinar

Abstract

Details

Traffic Safety and Human Behavior
Type: Book
ISBN: 978-1-78635-222-4

Open Access
Article
Publication date: 30 September 2019

Jia Li, Wenxiang Xu and Xiaohua Zhao

Connected vehicle-based variable speed limit (CV-VSL) systems in fog area use multi-source detection data to indicate drivers to make uniform change in speed when low visibility…

Abstract

Purpose

Connected vehicle-based variable speed limit (CV-VSL) systems in fog area use multi-source detection data to indicate drivers to make uniform change in speed when low visibility conditions suddenly occur. The purpose of the speed limit is to make the driver's driving behavior more consistent, so as to improve traffic safety and relieve traffic congestion. The on-road dynamic message sign (DMS) and on-board human–machine interface (HMI) are two types of warning technologies for CV-VSL systems. This study aims to analyze drivers’ acceptance of the two types of warning technologies in fog area and its influencing factors.

Design/methodology/approach

This study developed DMS and on-board HMI for the CV-VSL system in fog area on a driving simulator. The DMS and on-board HMI provided the driver with weather and speed limit information. In all, 38 participants participated in the experiment and completed questionnaires on drivers’ basic information, perceived usefulness and ease of use of the CV-VSL systems. Technology acceptance model (TAM) was developed to evaluate the drivers’ acceptance of CV-VSL systems. A variance analysis method was used to study the influencing factors of drivers’ acceptance including drivers’ characteristics, technology types and fog density.

Findings

The results showed that drivers’ acceptance of on-road DMS was significantly higher than that of on-board HMI. The fog density had no significant effect on drivers’ acceptance of on-road DMS or on-board HMI. Drivers’ gender, age, driving year and driving personality were associated with the acceptance of the two CV-VSL technologies differently. This study is beneficial to the functional improvement of on-road DMS, on-board HMI and their market prospects.

Originality/value

Previous studies have been conducted to evaluate the effectiveness of CV-VSL systems. However, there were rare studies focused on the drivers’ attitude toward using which was also called as acceptance of the CV-VSL systems. Therefore, this research calculated the drivers’ acceptance of two normally used CV-VSL systems including on-road DMS and on-board HMI using TAM. Furthermore, variance analysis was conducted to explore whether the factors such as drivers’ characteristics (gender, age, driving year and driving personality), technology types and fog density affected the drivers’ acceptance of the CV-VSL systems.

Details

Journal of Intelligent and Connected Vehicles, vol. 2 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 13 September 2022

Haitao Ding, Wei Li, Nan Xu and Jianwei Zhang

This study aims to propose an enhanced eco-driving strategy based on reinforcement learning (RL) to alleviate the mileage anxiety of electric vehicles (EVs) in the connected…

Abstract

Purpose

This study aims to propose an enhanced eco-driving strategy based on reinforcement learning (RL) to alleviate the mileage anxiety of electric vehicles (EVs) in the connected environment.

Design/methodology/approach

In this paper, an enhanced eco-driving control strategy based on an advanced RL algorithm in hybrid action space (EEDC-HRL) is proposed for connected EVs. The EEDC-HRL simultaneously controls longitudinal velocity and lateral lane-changing maneuvers to achieve more potential eco-driving. Moreover, this study redesigns an all-purpose and efficient-training reward function with the aim to achieve energy-saving on the premise of ensuring other driving performance.

Findings

To illustrate the performance for the EEDC-HRL, the controlled EV was trained and tested in various traffic flow states. The experimental results demonstrate that the proposed technique can effectively improve energy efficiency, without sacrificing travel efficiency, comfort, safety and lane-changing performance in different traffic flow states.

Originality/value

In light of the aforementioned discussion, the contributions of this paper are two-fold. An enhanced eco-driving strategy based an advanced RL algorithm in hybrid action space (EEDC-HRL) is proposed to jointly optimize longitudinal velocity and lateral lane-changing for connected EVs. A full-scale reward function consisting of multiple sub-rewards with a safety control constraint is redesigned to achieve eco-driving while ensuring other driving performance.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 12 July 2022

Zheng Xu, Yihai Fang, Nan Zheng and Hai L. Vu

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

Abstract

Purpose

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

Design/methodology/approach

The simulation environment is established by integrating virtual reality interface with a micro-simulation model. In the simulation, the vehicle autonomy is developed by a framework that integrates artificial neural networks and genetic algorithms. Human-subject experiments are carried, and participants are asked to virtually sit in the developed autonomous vehicle (AV) that allows for both human driving and autopilot functions within a mixed traffic environment.

Findings

Not surprisingly, the inconsistency is identified between two driving modes, in which the AV’s driving maneuver causes the cognitive bias and makes participants feel unsafe. Even though only a shallow portion of the cases that the AV ended up with an accident during the testing stage, participants still frequently intervened during the AV operation. On a similar note, even though the statistical results reflect that the AV drives under perceived high-risk conditions, rarely an actual crash can happen. This suggests that the classic safety surrogate measurement, e.g. time-to-collision, may require adjustment for the mixed traffic flow.

Research limitations/implications

Understanding the behavior of AVs and the behavioral difference between AVs and human drivers are important, where the developed platform is only the first effort to identify the critical scenarios where the AVs might fail to react.

Practical implications

This paper attempts to fill the existing research gap in preparing close-to-reality tools for AV experience and further understanding human behavior during high-level autonomous driving.

Social implications

This work aims to systematically analyze the inconsistency in driving patterns between manual and autopilot modes in various driving scenarios (i.e. multiple scenes and various traffic conditions) to facilitate user acceptance of AV technology.

Originality/value

A close-to-reality tool for AV experience and AV-related behavioral study. A systematic analysis in relation to the inconsistency in driving patterns between manual and autonomous driving. A foundation for identifying the critical scenarios where the AVs might fail to react.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 6 June 2023

Philipp Geiberger, Zhendong Liu, Mats Berg and Christoph Domay

For billing purposes, heavy-haul locomotives in Sweden are equipped with on-board energy meters, which can record several parameters, e.g., used energy, regenerated energy, speed…

Abstract

Purpose

For billing purposes, heavy-haul locomotives in Sweden are equipped with on-board energy meters, which can record several parameters, e.g., used energy, regenerated energy, speed and position. Since there is a strong demand for improving energy efficiency in Sweden, data from the energy meters can be used to obtain a better understanding of the detailed energy usage of heavy-haul trains and identify potential for future improvements.

Design/methodology/approach

To monitor energy efficiency, the present study, therefore, develops key performance indicators (KPIs), which can be calculated with energy meter data to reflect the energy efficiency of heavy-haul trains in operation. Energy meter data of IORE class locomotives, hauling highly uniform 30-tonne axle load trains with 68 wagons, together with additional data sources, are analysed to identify significant parameters for describing driver influence on energy usage.

Findings

Results show that driver behaviour varies significantly and has the single largest influence on energy usage. Furthermore, parametric studies are performed with help of simulation to identify the influence of different operational and rolling stock conditions, e.g., axle loads and number of wagons, on energy usage.

Originality/value

Based on the parametric studies, some operational parameters which have significant impact on energy efficiency are found and then the KPIs are derived. In the end, some possible measures for improving energy performance in heavy-haul operations are given.

Details

Railway Sciences, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of 774