Search results

1 – 10 of over 5000
Article
Publication date: 12 February 2024

Hamid Reza Saeidnia, Elaheh Hosseini, Shadi Abdoli and Marcel Ausloos

The study aims to analyze the synergy of artificial intelligence (AI), with scientometrics, webometrics and bibliometrics to unlock and to emphasize the potential of the…

Abstract

Purpose

The study aims to analyze the synergy of artificial intelligence (AI), with scientometrics, webometrics and bibliometrics to unlock and to emphasize the potential of the applications and benefits of AI algorithms in these fields.

Design/methodology/approach

By conducting a systematic literature review, our aim is to explore the potential of AI in revolutionizing the methods used to measure and analyze scholarly communication, identify emerging research trends and evaluate the impact of scientific publications. To achieve this, we implemented a comprehensive search strategy across reputable databases such as ProQuest, IEEE Explore, EBSCO, Web of Science and Scopus. Our search encompassed articles published from January 1, 2000, to September 2022, resulting in a thorough review of 61 relevant articles.

Findings

(1) Regarding scientometrics, the application of AI yields various distinct advantages, such as conducting analyses of publications, citations, research impact prediction, collaboration, research trend analysis and knowledge mapping, in a more objective and reliable framework. (2) In terms of webometrics, AI algorithms are able to enhance web crawling and data collection, web link analysis, web content analysis, social media analysis, web impact analysis and recommender systems. (3) Moreover, automation of data collection, analysis of citations, disambiguation of authors, analysis of co-authorship networks, assessment of research impact, text mining and recommender systems are considered as the potential of AI integration in the field of bibliometrics.

Originality/value

This study covers the particularly new benefits and potential of AI-enhanced scientometrics, webometrics and bibliometrics to highlight the significant prospects of the synergy of this integration through AI.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 2 August 2023

Hien Thi Thanh Nguyen, Wu-Yuin Hwang, Thao Pham, Tuyen Thi Thanh Truong and Hsin-Wei Chang

This study aims to examine the effects of the proposed mobile Web library application (MWLA) on the search experience and its impact on learners’ engagement, interaction and…

Abstract

Purpose

This study aims to examine the effects of the proposed mobile Web library application (MWLA) on the search experience and its impact on learners’ engagement, interaction and overall learning outcomes within an institutional repository. Furthermore, the study investigates learners’ acceptance of the MWLA system.

Design/methodology/approach

The study suggests implementing an MWLA with Algolia’s search service to improve the institutional repository and enhance learners’ access to reliable information. It involved an experiment with 85 undergraduate students divided into experimental and control groups (CGs), where the experimental group (EG) used MWLA for search tasks, and the CG used the traditional library website. The study evaluated the acceptance and learning behaviours of the EG towards MWLA, considering factors such as usefulness, ease of use, mobility, accessibility, satisfaction and intention to use.

Findings

The findings of this study provide empirical evidence that the EG, which used the MWLA, demonstrated superior performance compared to the CG across all institutional repository collections, resulting in improved learning outcomes. Participants were highly satisfied with MWLA and found it user-friendly and beneficial for improving search skills. MWLA’s portability and accessibility motivated active learner engagement.

Originality/value

The powerful search bar of MWLA significantly enhanced learners’ search efficiency, resulting in more effective retrieval of relevant materials. Moreover, learners who actively engaged with previews and full-text content, using appropriate keywords and syntax, achieved higher scores and were more likely to access previews, abstracts and full texts of documents using the sorting-by-year or by-advisor feature.

Article
Publication date: 14 September 2023

Jiyang Yu, Hua Zhong and Marzia Bolpagni

The purpose of this paper is to analyse the current state of research on the integration of blockchain and building information modelling (BIM) in the Architecture, Engineering…

Abstract

Purpose

The purpose of this paper is to analyse the current state of research on the integration of blockchain and building information modelling (BIM) in the Architecture, Engineering, Construction and Operations (AECO) industry as a means of identifying gaps between the existing paradigm and practical applications for determining future research directions and improving the industry. The study aims to provide clear guidance on areas that need attention for further research and funding and to draw academic attention to factors beyond the technical dimension.

Design/methodology/approach

A mixed-method systematic review is used, considering multiple literature types and using a sociotechnical perspective-based framework that covers three dimensions (technic, process and context) and three research elements (why, what and how). Data are retrieved and analysed from the Web of Science and Scopus databases for the 2017–2023 period.

Findings

While blockchain has the potential to address security, traceability and transparency and complement the system by integrating supporting applications, significant gaps still exist between these potentials and widespread industry adoption. Current limitations and further research needs are identified, including designing fully integrated prototypes, empirical research to identify operational processes, testing and analysing operational-level models or applications and developing and applying a technology acceptance model for the integration paradigm. Previous research lacks contextual settings, real-world tests or empirical investigations and is primarily conceptual.

Originality/value

This paper provides a comprehensive, critical systematic review of the integration of blockchain with BIM in the construction industry, using a sociotechnical perspective-based framework which can be applied in future reviews. The study provides insight into the current state and future opportunities for policymakers and practitioners in the AECO industry to prepare for the transition in this disruptive paradigm. It also provides a phased plan along with a clear direction for the transition to more advanced applications.

Details

Construction Innovation , vol. 24 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 9 February 2024

Armando Calabrese, Antonio D'Uffizi, Nathan Levialdi Ghiron, Luca Berloco, Elaheh Pourabbas and Nathan Proudlove

The primary objective of this paper is to show a systematic and methodological approach for the digitalization of critical clinical pathways (CPs) within the healthcare domain.

Abstract

Purpose

The primary objective of this paper is to show a systematic and methodological approach for the digitalization of critical clinical pathways (CPs) within the healthcare domain.

Design/methodology/approach

The methodology entails the integration of service design (SD) and action research (AR) methodologies, characterized by iterative phases that systematically alternate between action and reflective processes, fostering cycles of change and learning. Within this framework, stakeholders are engaged through semi-structured interviews, while the existing and envisioned processes are delineated and represented using BPMN 2.0. These methodological steps emphasize the development of an autonomous, patient-centric web application alongside the implementation of an adaptable and patient-oriented scheduling system. Also, business processes simulation is employed to measure key performance indicators of processes and test for potential improvements. This method is implemented in the context of the CP addressing transient loss of consciousness (TLOC), within a publicly funded hospital setting.

Findings

The methodology integrating SD and AR enables the detection of pivotal bottlenecks within diagnostic CPs and proposes optimal corrective measures to ensure uninterrupted patient care, all the while advancing the digitalization of diagnostic CP management. This study contributes to theoretical discussions by emphasizing the criticality of process optimization, the transformative potential of digitalization in healthcare and the paramount importance of user-centric design principles, and offers valuable insights into healthcare management implications.

Originality/value

The study’s relevance lies in its ability to enhance healthcare practices without necessitating disruptive and resource-intensive process overhauls. This pragmatic approach aligns with the imperative for healthcare organizations to improve their operations efficiently and cost-effectively, making the study’s findings relevant.

Details

European Journal of Innovation Management, vol. 27 no. 9
Type: Research Article
ISSN: 1460-1060

Keywords

Book part
Publication date: 13 December 2023

Somayya Madakam, Rajeev Kumar Revulagadda, Vinaytosh Mishra and Kaustav Kundu

One of the most hyped concepts in the manufacturing industry is ‘Industry 4.0’. The ‘Industry 4.0’ concept is grabbing the attention of every manufacturing industry across the…

Abstract

One of the most hyped concepts in the manufacturing industry is ‘Industry 4.0’. The ‘Industry 4.0’ concept is grabbing the attention of every manufacturing industry across the globe because of its immense applications. This phenomenon is an advanced version of Industry 3.0, combining manufacturing processes and the latest Internet of Things (IoT) technologies. The main advantage of this paradigm shift is efficiency and efficacy in the manufacturing process with the help of advanced automated technologies. The concept of ‘Industry 4.0’ is contemporary, so it falls under exploratory study. Therefore, the research methodology is thematic narration grounded on secondary data (online) analysis. In this light, this chapter aims to explain ‘Industry 4.0’ in terms of concepts, theories and models based on the Web of Science (WoS) database. The data include research manuscripts, book chapters, blogs, white papers, news items and proceedings. The study details the latest technologies behind the ‘Industry 4.0’ phenomenon, different business intelligence technologies and their practical implications in some manufacturing industries. This chapter mainly elaborates on Industry 4.0 frameworks designed by (1) PwC (2) IBM (3) Frost & Sullivan.

Details

Fostering Sustainable Development in the Age of Technologies
Type: Book
ISBN: 978-1-83753-060-1

Keywords

Article
Publication date: 10 July 2023

Md. Mehrab Hossain, Shakil Ahmed, S.M. Asif Anam, Irmatova Aziza Baxramovna, Tamanna Islam Meem, Md. Habibur Rahman Sobuz and Iffat Haq

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be…

Abstract

Purpose

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be prone to errors and result in numerous fatalities annually. This study aims to address this issue by proposing a cloud-building information modeling (BIM)-based framework to provide real-time safety monitoring on construction sites to enhance safety practices and reduce fatalities.

Design/methodology/approach

This system integrates an automated safety tracking mobile app to detect hazardous locations on construction sites, a cloud-based BIM system for visualization of worker tracking on a virtual construction site and a Web interface to visualize and monitor site safety.

Findings

The study’s results indicate that implementing a comprehensive automated safety monitoring approach is feasible and suitable for general indoor construction site environments. Furthermore, the assessment of an advanced safety monitoring system has been successfully implemented, indicating its potential effectiveness in enhancing safety practices in construction sites.

Practical implications

By using this system, the construction industry can prevent accidents and fatalities, promote the adoption of new technologies and methods with minimal effort and cost and improve safety outcomes and productivity. This system can reduce workers’ compensation claims, insurance costs and legal penalties, benefiting all stakeholders involved.

Originality/value

To the best of the authors’ knowledge, this study represents the first attempt in Bangladesh to develop a mobile app-based technological solution aimed at reforming construction safety culture by using BIM technology. This has the potential to change the construction sector’s attitude toward accepting new technologies and cultures through its convenient choice of equipment.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 8 June 2022

Larissa Statsenko, Aparna Samaraweera, Javad Bakhshi and Nicholas Chileshe

Based on the systematic literature review, this paper aims to propose a framework of Construction 4.0 (C4.0) scenarios, identifying Industry 4.0 (I4.0) enabling technologies and…

1907

Abstract

Purpose

Based on the systematic literature review, this paper aims to propose a framework of Construction 4.0 (C4.0) scenarios, identifying Industry 4.0 (I4.0) enabling technologies and their applications in the construction industry. The paper reviews C4.0 trends and potential areas for development.

Design/methodology/approach

In this research, a systematic literature review (SLR) methodology has been applied, including bibliographic coupling analysis (BCA), co-citation network analysis of keywords, the content analysis with the visualisation of similarities (VOSviewer) software and aggregative thematic analysis (ATA). In total, 170 articles from the top 22 top construction journals in the Scopus database between 2013 and 2021 were analysed.

Findings

Six C4.0 scenarios of applications were identified. Out of nine I4.0 technology domains, Industrial Internet of Things (IIoT), Cloud Computing, Big Data and Analytics had the most references in C4.0 research, while applications of augmented/virtual reality, vertical and horizontal integration and autonomous robotics yet provide ample avenues for the future applied research. The C4.0 application scenarios include efficient energy usage, prefabricated construction, sustainability, safety and environmental management, indoor occupant comfort and efficient asset utilisation.

Originality/value

This research contributes to the body of knowledge by offering a framework of C4.0 scenarios revealing the status quo of research published in the top construction journals into I4.0 technology applications in the sector. The framework evaluates current C4.0 research trends and gaps in relation to nine I4.0 technology domains as compared with more advanced industry sectors and informs academic community, practitioners and strategic policymakers with interest in C4.0 trends.

Details

Construction Innovation , vol. 23 no. 5
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 7 December 2022

Peyman Jafary, Davood Shojaei, Abbas Rajabifard and Tuan Ngo

Building information modeling (BIM) is a striking development in the architecture, engineering and construction (AEC) industry, which provides in-depth information on different…

Abstract

Purpose

Building information modeling (BIM) is a striking development in the architecture, engineering and construction (AEC) industry, which provides in-depth information on different stages of the building lifecycle. Real estate valuation, as a fully interconnected field with the AEC industry, can benefit from 3D technical achievements in BIM technologies. Some studies have attempted to use BIM for real estate valuation procedures. However, there is still a limited understanding of appropriate mechanisms to utilize BIM for valuation purposes and the consequent impact that BIM can have on decreasing the existing uncertainties in the valuation methods. Therefore, the paper aims to analyze the literature on BIM for real estate valuation practices.

Design/methodology/approach

This paper presents a systematic review to analyze existing utilizations of BIM for real estate valuation practices, discovers the challenges, limitations and gaps of the current applications and presents potential domains for future investigations. Research was conducted on the Web of Science, Scopus and Google Scholar databases to find relevant references that could contribute to the study. A total of 52 publications including journal papers, conference papers and proceedings, book chapters and PhD and master's theses were identified and thoroughly reviewed. There was no limitation on the starting date of research, but the end date was May 2022.

Findings

Four domains of application have been identified: (1) developing machine learning-based valuation models using the variables that could directly be captured through BIM and industry foundation classes (IFC) data instances of building objects and their attributes; (2) evaluating the capacity of 3D factors extractable from BIM and 3D GIS in increasing the accuracy of existing valuation models; (3) employing BIM for accurate estimation of components of cost approach-based valuation practices; and (4) extraction of useful visual features for real estate valuation from BIM representations instead of 2D images through deep learning and computer vision.

Originality/value

This paper contributes to research efforts on utilization of 3D modeling in real estate valuation practices. In this regard, this paper presents a broad overview of the current applications of BIM for valuation procedures and provides potential ways forward for future investigations.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 May 2024

Claudio Rocco, Gianvito Mitrano, Angelo Corallo, Pierpaolo Pontrandolfo and Davide Guerri

The future increase of chronic diseases in the world requires new challenges in the health domain to improve patients' care from the point of view of the organizational processes…

Abstract

Purpose

The future increase of chronic diseases in the world requires new challenges in the health domain to improve patients' care from the point of view of the organizational processes, clinical pathways and technological solutions of digital health. For this reason, the present paper aims to focus on the study and application of well-known clinical practices and efficient organizational approaches through an innovative model (TALIsMAn) to support new care process redesign and digitalization for chronic patients.

Design/methodology/approach

In addition to specific clinical models employed to manage chronic conditions such as the Population Health Management and Chronic Care Model, we introduce a Business Process Management methodology implementation supported by a set of e-health technologies, in order to manage Care Pathways (CPs) digitalization and procedures improvement.

Findings

This study shows that telemedicine services with advanced devices and technologies are not enough to provide significant changes in the healthcare sector if other key aspects such as health processes, organizational systems, interactions between actors and responsibilities are not considered and improved. Therefore, new clinical models and organizational approaches are necessary together with a deep technological change, otherwise, theoretical benefits given by telemedicine services, which often employ advanced Information and Communication Technology (ICT) systems and devices, may not be translated into effective enhancements. They are obtained not only through the implementation of single telemedicine services, but integrating them in a wider digital ecosystem, where clinicians are supported in different clinical steps they have to perform.

Originality/value

The present work defines a novel methodological framework based on organizational, clinical and technological innovation, in order to redesign the territorial care for people with chronic diseases. This innovative ecosystem applied in the Italian research project TALIsMAn is based on the concept of a continuum of care and digitalization of CPs supported by Business Process Management System and telemedicine services. The main goal is to organize the different socio-medical activities in a unique and integrated IT system that should be sustainable, scalable and replicable.

Details

Business Process Management Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 12 January 2024

Ali Rashidi, George Lukic Woon, Miyami Dasandara, Mohsen Bazghaleh and Pooria Pasbakhsh

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers…

Abstract

Purpose

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers at a job site are paramount as they face both immediate and long-term risks such as falls and musculoskeletal disorders. To mitigate these dangers, sensor-based technologies have emerged as a crucial tool to promote the safety and well-being of workers on site. The implementation of real-time sensor data-driven monitoring tools can greatly benefit the construction industry by enabling the early identification and prevention of potential construction accidents. This study aims to explore the innovative method of prototype development regarding a safety monitoring system in the form of smart personal protective equipment (PPE) by taking advantage of the recent advances in wearable technology and cloud computing.

Design/methodology/approach

The proposed smart construction safety system has been meticulously crafted to seamlessly integrate with conventional safety gear, such as gloves and vests, to continuously monitor construction sites for potential hazards. This state-of-the-art system is primarily geared towards mitigating musculoskeletal disorders and preventing workers from inadvertently entering high-risk zones where falls or exposure to extreme temperatures could occur. The wearables were introduced through the proposed system in a non-intrusive manner where the safety vest and gloves were chosen as the base for the PPE as almost every construction worker would be required to wear them on site. Sensors were integrated into the PPE, and a smartphone application which is called SOTER was developed to view and interact with collected data. This study discusses the method and process of smart PPE system design and development process in software and hardware aspects.

Findings

This research study posits a smart system for PPE that utilises real-time sensor data collection to improve worksite safety and promote worker well-being. The study outlines the development process of a prototype that records crucial real-time data such as worker location, altitude, temperature and hand pressure while handling various construction objects. The collected data are automatically uploaded to a cloud service, allowing supervisors to monitor it through a user-friendly smartphone application. The worker tracking ability with the smart PPE can help to alleviate the identified issues by functioning as an active warning system to the construction safety management team. It is steadily evident that the proposed smart PPE system can be utilised by the respective industry practitioners to ensure the workers' safety and well-being at construction sites through monitoring of the workers with real-time sensor data.

Originality/value

The proposed smart PPE system assists in reducing the safety risks posed by hazardous environments as well as preventing a certain degree of musculoskeletal problems for workers. Ultimately, the current study unveils that the construction industry can utilise cloud computing services in conjunction with smart PPE to take advantage of the recent advances in novel technological avenues and bring construction safety management to a new level. The study significantly contributes to the prevailing knowledge of construction safety management in terms of applying sensor-based technologies in upskilling construction workers' safety in terms of real-time safety monitoring and safety knowledge sharing.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of over 5000