Search results

1 – 10 of 203
Open Access
Article
Publication date: 28 August 2024

Mingyu Gao, Jinghua Xu, Shuyou Zhang and Jianrong Tan

The layer section of laser additive manufacturing (AM) can be rasterized. Subsequently, the rasterized layer section can be converted into sparse matrix. However, large storage…

Abstract

Purpose

The layer section of laser additive manufacturing (AM) can be rasterized. Subsequently, the rasterized layer section can be converted into sparse matrix. However, large storage space is occupied due to the high manufacturing resolution. In order to reduce the storage space, the purpose of this research is to propose a lossless compression method to compress the sparse matrix.

Design/methodology/approach

A lossless compression method for additive manufacturing is proposed. According to manifold and irregularity feature of the object of laser AM, a lossless compression method called continuous rows compressed storage (CRCS) based on continuous rows is innovatively proposed. In particular, the better direction strategy of compression method is selected based on the side-projected area per layer.

Findings

Take human teeth as an example, compared with compressed sparse row (CSR), the CRCS has advantage up to 98.88% in storage space. Compared with block compressed sparse row (BCSR), the CRCS has advantage up to 60.04% in storage space.

Originality/value

The proposed CRCS could be employed to compress the sparse matrixes of rasterized layer sections of laser AM. Compared with common lossless compression method of sparse matrix, the compression ratio of CRCS is greater. CRCS is propitious to reduce the storage space usage, thereby improving transmission efficiency.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 6 September 2024

Nour Mani, Nhiem Tran, Alan Jones, Azadeh Mirabedini, Shadi Houshyar and Kate Fox

The purpose of this study is therefore to detail an additive manufacturing process for printing TiD parts for implant applications. Titanium–diamond (TiD) is a new composite that…

Abstract

Purpose

The purpose of this study is therefore to detail an additive manufacturing process for printing TiD parts for implant applications. Titanium–diamond (TiD) is a new composite that provides biocompatible three-dimensional multimaterial structures. Thus, the authors report a powder-deposition and print optimization strategy to overcome the dual-functionality gap by printing bulk TiD parts. However, despite favorable customization outcomes, relatively few additive manufacturing (AM) feedstock powders offer the biocompatibility required for medical implant and device technologies.

Design/methodology/approach

AM offers a platform to fabricate customized patient-specific parts. Developing feedstock that can be 3D printed into specific 3D structures while providing a favorable interface with the human tissue remains a challenge. Using laser metal deposition, feedstock powder comprising diamond and titanium was co-printed into TiD parts for mechanical testing to determine optimal manufacturing parameters.

Findings

TiD parts were fabricated comprising 30% and 50% diamond. The composite powder had a Hausner ratio of 1.13 and 1.21 for 30% and 50% TiD, respectively. The flow analysis (Carney flow) for TiD 30% and 50% was 7.53 and 5.15 g/s. The authors report that the printing-specific conditions significantly affect the integrity of the printed part and thus provide the optimal manufacturing parameters for structural integrity as determined by micro-computed tomography, nanoindentation and biocompatibility of TiD parts. The hardness, ultimate tensile strength and yield strength for TiD are 4–6 GPa (depending on build position), 426 MPa and 375 MPa, respectively. Furthermore, the authors show that increasing diamond composition to 30% results in higher osteoblast viability and lower bacteria count than titanium.

Originality/value

In this study, the authors provide a clear strategy to manufacture TiD parts with high integrity, performance and biocompatibility, expanding the material feedstock library and paving the way to customized diamond implants. Diamond is showing strong potential as a biomedical material; however, upscale is limited by conventional techniques. By optimizing AM as the avenue to make complex shapes, the authors open up the possibility of patient-specific diamond implant solutions.

Graphical abstarct

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 August 2024

Baris Kirim, Emrecan Soylemez, Evren Tan and Evren Yasa

This study aims to develop a novel thermal modeling strategy to simulate electron beam powder bed fusion at part scale with machine-varying process parameters strategy…

Abstract

Purpose

This study aims to develop a novel thermal modeling strategy to simulate electron beam powder bed fusion at part scale with machine-varying process parameters strategy. Single-bead and part-scale experiments and modeling were studied. Scanning strategies were described by the process controlling functions that enabled modeling.

Design/methodology/approach

The finite element analysis thermal model was used along with the powder bed fusion with electron beam experiments. The proposed strategy involves dividing a part into smaller sections and creating meso-scale models for each subsection. These meso-scale models take into consideration the variable process parameters, including power and velocity of the moving heat source, during part building. Subsequently, these models are integrated to perform partscale simulations, enabling more realistic predictions of thermal accumulation and resulting distortions. The model was built and validated with single-bead experiments and bulky parts with different features.

Findings

Single-bead experiments demonstrated an average error rate of 6%–24% for melt pool dimension prediction using the proposed meso-scale models with different scanning control functions. Part-scale simulations for three different geometries (cantilever beams with supports, bulk artifact and topology-optimized transfer arm) showed good agreement between modeled temperature changes and experimental deformation values.

Originality/value

This study presents a novel approach for electron beam powder bed fusion modeling that leverages meso-scale models to capture the influence of variable process parameters on part quality. This strategy offers improved accuracy for predicting part geometry and identifying potential defects, leading to a more efficient additive manufacturing process.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 September 2024

Gang Li, Shuainan Song, Qun Cai, Biao Wu and Zhichao Wen

For the purpose of saving nickel, this study aims to develop new duplex stainless steel cored wires suitable for wire arc additive manufacturing (WAAM) with the addition of…

Abstract

Purpose

For the purpose of saving nickel, this study aims to develop new duplex stainless steel cored wires suitable for wire arc additive manufacturing (WAAM) with the addition of nitrogen.

Design/methodology/approach

The effect of nitrogen content on the microstructure and mechanical properties of the thin-walled deposits is investigated in detail.

Findings

The microstructure of thin-walled deposits mainly consists of austenite, ferrite and secondary austenite. With increasing nitrogen content, the austenite in the deposited metals increases. The austenite proportion in the bottom region is more than that in the top region of the deposited metals. The χ phase is randomly distributed at the grain boundaries and within ferrite. The σ phase is mainly precipitated at ferrite and austenite grain boundaries. With increasing nitrogen content, the tensile strength of the deposited metals increases, but the impact toughness of the deposited metals deteriorates.

Originality/value

This study proposes new duplex stainless steel cored wires for WAAM, which realizes the objective of saving nickel.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 October 2023

N. Harikannan, S. Vinodh and Jiju Antony

The purpose of this study is to discuss the construction of a structural measurement model utilizing structural equation modelling (SEM) to confirm the link between Industry 4.0…

Abstract

Purpose

The purpose of this study is to discuss the construction of a structural measurement model utilizing structural equation modelling (SEM) to confirm the link between Industry 4.0 technologies, sustainable manufacturing practices and organizational sustainable performance. Relationship among the paradigm has yet to be fully investigated, necessitating a more conceptual and empirical examination on what impact they have on organizational sustainable performance when used together.

Design/methodology/approach

Industry 4.0 and sustainable production practices aim to progress a company's business competitiveness, forming sustainable development that benefits manufacturing companies. The aim of the study is to analyze the relationship between constructs that lead to operational excellence in firms that use Industry 4.0 technologies and sustainable manufacturing techniques. Experts from diverse automotive industries, who are applying both Industry 4.0 and sustainable manufacturing practices, provided data for the study.

Findings

Statistical estimations (hypotheses) are created to substantiate the measurement model that has been developed. The structural model was analysed, and the findings were discussed. The statistical estimate is either approved or rejected based on the findings. According to the conclusions of this study, strong link exists between Industry 4.0 technologies and sustainable manufacturing practices that affect organizational sustainable performance environmentally, economically and socially.

Practical implications

The research was conducted in the framework of automobile component manufacturing companies in India. The outcomes of the study are practically feasible.

Originality/value

The authors' novel contribution is the construction of a structural model with Industry 4.0 technologies and sustainable manufacturing practices into account.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 16 July 2024

Andrew Miceli, Grant Bevil and Jutima Simsiriwong

Struck-by accidents (i.e. being hit by a falling object) are a leading cause of traumatic brain injuries in the construction industry. Despite the critical role of hard hats in…

Abstract

Purpose

Struck-by accidents (i.e. being hit by a falling object) are a leading cause of traumatic brain injuries in the construction industry. Despite the critical role of hard hats in minimizing such injuries, their overall design has not appreciably changed in decades. Therefore, this study aims to explore the potential benefits of modifying commercially available hard hat designs by incorporating a compliant cantilever and a sacrificial, energy-absorbing structure to enhance their protective capabilities against impacts.

Design/methodology/approach

This study involved conducting experimental impact tests to obtain the head acceleration attenuation using hard hats with a variety of compliant cantilever lattice insert designs. These lattice inserts were additively manufactured using three polymeric materials, including polylactide (PLA), acrylonitrile butadiene styrene, high-impact polystyrene and three porosity levels. A Hybrid III head/neck assembly was fitted with each hard hat design, and experimental drop tests were conducted using a 1.8-kg steel impactor dropped from 1.83 m. The maximum acceleration and head injury criterion (HIC) values were obtained for each test.

Findings

Analysis of variance revealed that HIC was significantly reduced for all lattices with 56% porosity (p < 0.023) compared to the control (unmodified) hard hat. The most effective insert was found to be a PLA insert with 56% porosity, which reduced the HIC value by 38% compared to the control (unmodified) hard hat, with a statistically significant p-value of 0.018.

Originality/value

The data present in this study reveals that simple and inexpensive modifications can be made to existing hard hat designs to reduce injury risk from overhead impacts.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 September 2024

Zhuoyang Xin, Guanqi Zhu, Yun Chung Hsueh and Dan Luo

Additive lamination manufacturing (ALM), as a novel additive manufacturing technology, builds up the geometry via the lamination of fiber-reinforced polymer (FRP) fabric…

Abstract

Purpose

Additive lamination manufacturing (ALM), as a novel additive manufacturing technology, builds up the geometry via the lamination of fiber-reinforced polymer (FRP) fabric laterally, rendering it suitable for fabricating large-scale Stay-in-Place concrete formwork. This paper aims to investigate the control parameters and structure performance of ALM and assess its application for the fabrication of large-scale concrete formwork.

Design/methodology/approach

Based on previous feasibility studies, this research systematically investigates the control and material parameters that influence horizontal and vertical extrusion speeds, as well as the overall quality of ALM. Once the system parameters are established, a series of prototypes are fabricated and tested to validate the tensile strength of the formwork and its reinforcement capabilities. In addition, this study assesses the potential geometric freedom and implementation constraints of ALM.

Findings

This research identifies the essential control parameters for path planning in ALM and examines their impact on fabrication. In addition, this paper evaluates ALM’s strengths and limitations in producing concrete formwork for large-scale concrete structures, comparing these to industry benchmarks.

Originality/value

A critical challenge in additive manufacturing lies in its scalability and compatibility with existing construction processes. In comparison to concrete, FRP offers advantages such as being lighter, easier to handle and providing surface protection and reinforcement. These qualities make FRP superior for formwork and compatible with existing building standards. Despite its advantages and potential, the current path planning and control model in 3D printing do not apply to ALM due to its novel build-up process. Also, the performance of fabricated parts as part of integrated large-scale structures is yet to be studied.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 September 2024

Marko Delić, Vesna Mandić, Srbislav Aleksandrović, Dušan Arsić and Djordje Ivković

The impact of the application of hollow structures through variations of infill patterns and their density on the tensile properties was considered. The mechanical properties of…

Abstract

Purpose

The impact of the application of hollow structures through variations of infill patterns and their density on the tensile properties was considered. The mechanical properties of the parts have a significant influence on the behavior and reliability of the parts in exploitation.

Design/methodology/approach

In this paper, the mechanical properties of the additively manufactured ABS material were investigated depending on the FDM printing parameters, which relate both to process parameters such as printing velocity and layer thickness, but also to coupled influence with the change of specimen orientation, that is raster angle. A standard tensile test was applied so that the specimens were prepared according to the ASTM D638 standard.

Findings

The results of the conducted experimental research enable the identification of the optimal choice of printing parameters for additively produced ABS materials with the highest values of strain at break and tensile strength. The significance of the obtained results is reflected in the recommendations for the selection of appropriate combination of process parameters for additive manufacturing of ABS parts using FDM technology.

Originality/value

This paper evaluates influence of FDM printing parameters on the tensile strength of parts and therefore on the reliability of the parts.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 October 2022

Deena El-Mahdy, Hisham S. Gabr and Sherif Abdelmohsen

Despite the dramatic increase in construction toward additive manufacturing, several challenges are faced using natural materials such as Earth and salt compared to the most…

Abstract

Purpose

Despite the dramatic increase in construction toward additive manufacturing, several challenges are faced using natural materials such as Earth and salt compared to the most market-useable materials in 3D printing as concrete which consumes high carbon emission.

Design/methodology/approach

Characterization and mechanical tests were conducted on 19 samples for three natural binders in dry and wet tests to mimic the additive manufacturing process in order to reach an efficient extrudable and printable mixture that fits the 3D printer.

Findings

Upon testing compressive strength against grain size, compaction, cohesion, shape, heat and water content, X-Salt was shown to record high compressive strength of 9.5 MPa. This is equivalent to old Karshif and fire bricks and surpasses both rammed Earth and new Karshif. Material flow analysis for X-Salt assessing energy usage showed that only 10% recycled waste was produced by the end of the life cycle compared to salt.

Research limitations/implications

Findings are expected to upscale the use of 3D salt printing in on-site and off-site architectural applications.

Practical implications

Findings contribute to attempts to resolve challenges related to vernacular architecture using 3D salt printing with sufficient stability.

Social implications

Benefits include recyclability and minimum environmental impact. Social aspects related to technology integration remain however for further research.

Originality/value

This paper expands the use of Karshif, a salt-based traditional building material in Egypt's desert by using X-Salt, a salt-base and natural adhesive, and investigating its printability by testing its mechanical properties to reach a cleaner and low-cost sustainable 3D printed mixture.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 15 August 2024

Moontaha Farin, Jarin Tasnim Maisha, Ian Gibson and M. Tarik Arafat

Additive manufacturing (AM), also known as three-dimensional (3D) printing technology, has been used in the health-care industry for over two decades. It is in high demand in the…

Abstract

Purpose

Additive manufacturing (AM), also known as three-dimensional (3D) printing technology, has been used in the health-care industry for over two decades. It is in high demand in the health-care industry due to its strength to manufacture custom-designed and personalized 3D constructs. Recently, AM technologies are being explored to develop personalized drug delivery systems, such as personalized oral dosages, implants and others due to their potential to design and develop systems with complex geometry and programmed controlled release profile. Furthermore, in 2015, the US Food and Drug Administration approved the first AM medication, Spritam® (Apprecia Pharmaceuticals) which has led to tremendous interest in exploring this technology as a bespoke solution for patient-specific drug delivery systems. The purpose of this study is to provide a comprehensive overview of AM technologies applied to the development of personalized drug delivery systems, including an analysis of the commercial status of AM based drugs and delivery devices.

Design/methodology/approach

This review paper provides a detailed understanding of how AM technologies are used to develop personalized drug delivery systems. Different AM technologies and how these technologies can be chosen for a specific drug delivery system are discussed. Different types of materials used to manufacture personalized drug delivery systems are also discussed here. Furthermore, recent preclinical and clinical trials are discussed. The challenges and future perceptions of personalized medicine and the clinical use of these systems are also discussed.

Findings

Substantial works are ongoing to develop personalized medicine using AM technologies. Understanding the regulatory requirements is needed to establish this area as a point-of-care solution for patients. Furthermore, scientists, engineers and regulatory agencies need to work closely to successfully translate the research efforts to clinics.

Originality/value

This review paper highlights the recent efforts of AM-based technologies in the field of personalized drug delivery systems with an insight into the possible future direction.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 203