Search results

1 – 10 of 19
Open Access
Article
Publication date: 22 March 2022

Hong Zhang and Tianlin Chen

The purpose of the study is to obtain and analyze vibro-acoustic characteristics.

Abstract

Purpose

The purpose of the study is to obtain and analyze vibro-acoustic characteristics.

Design/methodology/approach

A unified analysis model for the rotary composite laminated plate and conical–cylindrical double cavities coupled system is established. The related parameters of the unified model are determined by isoparametric transformation. The modified Fourier series are applied to construct the admissible displacement function and the sound pressure tolerance function of the coupled systems. The energy functional of the structure domain and acoustic field domain is established, respectively, and the structure–acoustic coupling potential energy is introduced to obtain the energy functional. Rayleigh–Ritz method was used to solve the energy functional.

Findings

The displacement and sound pressure response of the coupled systems are acquired by introducing the internal point sound source excitation, and the influence of relevant parameters of the coupled systems is researched. Through research, it is found that the impedance wall can reduce the amplitude of the sound pressure response and suppress the resonance of the coupled systems. Besides, the composite laminated plate has a good noise reduction effect.

Originality/value

This study can provide the theoretical guidance for vibration and noise reduction.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 2 January 2024

David J. Thompson, Dong Zhao, Evangelos Ntotsios, Giacomo Squicciarini, Ester Cierco and Erwin Jansen

The vibration of the rails is a significant source of railway rolling noise, often forming the dominant component of noise in the important frequency region between 400 and…

Abstract

Purpose

The vibration of the rails is a significant source of railway rolling noise, often forming the dominant component of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper is to investigate the influence of the ground profile and the presence of the train body on the sound radiation from the rail.

Design/methodology/approach

Two-dimensional boundary element calculations are used, in which the rail vibration is the source. The ground profile and various different shapes of train body are introduced in the model, and results are observed in terms of sound power and sound pressure. Comparisons are also made with vibro-acoustic measurements performed with and without a train present.

Findings

The sound radiated by the rail in the absence of the train body is strongly attenuated by shielding due to the ballast shoulder. When the train body is present, the sound from the vertical rail motion is reflected back down toward the track where it is partly absorbed by the ballast. Nevertheless, the sound pressure at the trackside is increased by typically 0–5 dB. For the lateral vibration of the rail, the effects are much smaller. Once the sound power is known, the sound pressure with the train present can be approximated reasonably well with simple line source directivities.

Originality/value

Numerical models used to predict the sound radiation from railway rails have generally neglected the influence of the ground profile and reflections from the underside of the train body on the sound power and directivity of the rail. These effects are studied in a systematic way including comparisons with measurements.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 8 November 2023

Armando Di Meglio, Nicola Massarotti, Samuel Rolland and Perumal Nithiarasu

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical…

Abstract

Purpose

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical correlations between pressure gradient and velocity.

Design/methodology/approach

The numerical correlations origin from computational fluid dynamics simulations, conducted at the microscopic scale, in which three fluid channels representing the porous media are taken into account. More specifically, for a specific frequency and stack porosity, the oscillating pressure input is varied, and the velocity and the pressure-drop are post-processed in the frequency domain (Fast Fourier Transform analysis).

Findings

It emerges that the viscous component of pressure drop follows a quadratic trend with respect to velocity inside the stack, while the inertial component is linear also at high-velocity regimes. Furthermore, the non-linear coefficient b of the correlation ax + bx2 (related to the Forchheimer coefficient) is discovered to be dependent on frequency. The largest value of the b is found at low frequencies as the fluid particle displacement is comparable to the stack length. Furthermore, the lower the porosity the higher the Forchheimer term because the velocity gradients at the stack geometrical discontinuities are more pronounced.

Originality/value

The main novelty of this work is that, for the first time, non-linear losses of a parallel plate stack are investigated from a macroscopic point of view and summarised into a non-linear correlation, similar to the steady-state and well-known Darcy–Forchheimer law. The main difference is that it considers the frequency dependence of both Darcy and Forchheimer terms. The results can be used to enhance the analysis and design of thermoacoustic devices, which use the kind of stacks studied in the present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 1 March 1998

124

Abstract

Details

Sensor Review, vol. 18 no. 1
Type: Research Article
ISSN: 0260-2288

Content available
Article
Publication date: 1 September 2002

Jon Rigelsford

39

Abstract

Details

Sensor Review, vol. 22 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 1 April 1999

177

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 71 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
600

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 18 November 2013

148

Abstract

Details

Circuit World, vol. 39 no. 4
Type: Research Article
ISSN: 0305-6120

Content available
Article
Publication date: 18 November 2013

205

Abstract

Details

Circuit World, vol. 39 no. 4
Type: Research Article
ISSN: 0305-6120

Open Access
Article
Publication date: 30 July 2024

Lin Li, Jiushan Wang and Shilu Xiao

The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.

Abstract

Purpose

The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.

Design/methodology/approach

The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle. Based on data mechanism models, it predicts the lifespan of key components, evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.

Findings

The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system, which helps operators to monitor the operation of vehicle online, predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.

Originality/value

This system improves the efficiency of rail vehicle operation, scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle.

1 – 10 of 19