Search results

1 – 10 of 197
Article
Publication date: 15 November 2023

Chike F. Oduoza, Reem Alamri and David Oloke

Deployment of health and safety standards in extremely hazardous work environments such as oil and gas sector, is essential to minimise accidents leaving employees permanently or…

Abstract

Purpose

Deployment of health and safety standards in extremely hazardous work environments such as oil and gas sector, is essential to minimise accidents leaving employees permanently or temporarily incapacitated. The purpose of this research, is to understand why there are frequent accidents in case country's oil and gas sector, with a view to recommend solutions to mitigate problems.

Design/methodology/approach

Research methodology involved extensive review of the literature to appreciate background, and current research on typical accidents and safety measures taken at oil and gas construction sites to minimise accidents in a middle east country. Interviews, questionnaires and case stidies were deployed to acquire data which highlighted major reasons for accidents occurrence at oil and gas construction sites, and safety tools and techniques that could reduce accident rate if adopted by companies.

Findings

Findings, showed that oil and gas construction projects in case country were prone to health and safety related risks, challenges and accidents due to failure to comply with standards and legislation. Construction site teams and shop floor staff were rarely involved in development of safety policies, and some had no understanding of requirements and procedures underpinning safety during operations. Research recommended rapid application/adoption of international standards underpinned by ISO 45000 series and staff training at all levels. Deployment of robots and use of machine learning technology were suggested to implement risky tasks in the sector.

Originality/value

Research was based on rampant accidents occurring in hazardous oil and gas sector in country studied. Enforcement of health and safety standards, and use of modern tools and techniques were recommended to minimise accident rate.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 20 October 2022

Md. Kamal Uddin, Mohammad Nur Nobi and ANM Moinul Islam

The shipbreaking sector in Bangladesh has spurred extensive academic and policy debates on relations between shipbreaking industries, environmental degradation and the health…

Abstract

Purpose

The shipbreaking sector in Bangladesh has spurred extensive academic and policy debates on relations between shipbreaking industries, environmental degradation and the health security of their workers. As shipbreaking is an economically significant industry in Bangladesh, it needs to implement both domestic and global mechanisms for environmental conservation and the protection of the labourers’ health from environmental risks. The purpose of this paper is to primarily explore the environmental and health security issues in shipbreaking activities in Bangladesh. It also identifies the challenges in implementing the rules and regulations for protecting the health of the workers at shipbreaking yards in Bangladesh and preserving the marine environment.

Design/methodology/approach

This is a qualitative paper based on secondary materials, including journal articles, books and national and international reports. It critically reviews the existing literature, rules, regulations and policing on shipbreaking with a particular focus on the environment and health security of the workers.

Findings

This paper finds that the implementation of the rules and regulations in shipbreaking in Bangladesh is complicated because of weak implementation mechanisms, political and economic interests of the yard owners, lack of coordination among different agencies, lack of adequate training and awareness among the workers and workers’ poor economic condition, which contribute to the degradation of marine and local environments and trigger health hazards among the workers. Therefore, degrading the environment and undermining occupational health and safety regulations have become regular; thus, accidental death and injury to the workers are common in this sector.

Originality/value

This paper is an important study on the issues of workers' health and safety and environmental hazards in the shipyard. It reports how the health security of the workers in shipbreaking yards in Bangladesh is vulnerable, and environmental rules are challenged. Finally, this paper frames some policy implications to safeguard the workers’ health rights and the marine environment.

Details

International Journal of Human Rights in Healthcare, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2056-4902

Keywords

Article
Publication date: 20 March 2023

Esra Dobrucali, Emel Sadikoglu, Sevilay Demirkesen, Chengyi Zhang, Algan Tezel and Isik Ates Kiral

Construction is a risky industry. Therefore, organizations are seeking ways towards improving their safety performance. Among these, the integration of technology into health and…

Abstract

Purpose

Construction is a risky industry. Therefore, organizations are seeking ways towards improving their safety performance. Among these, the integration of technology into health and safety leads to enhanced safety performance. Considering the benefits observed in using technology in safety, this study aims to explore digital technologies' use and potential benefits in construction health and safety.

Design/methodology/approach

An extensive bibliometrics analysis was conducted to reveal which technologies are at the forefront of others and how these technologies are used in safety operations. The study used two different databases, Web of Science (WoS) and Scopus, to scan the literature in a systemic way.

Findings

The systemic analysis of several studies showed that the digital technologies use in construction are still a niche theme and need more assessment. The study provided that sensors and wireless technology are of utmost importance in terms of construction safety. Moreover, the study revealed that artificial intelligence, machine learning, building information modeling (BIM), sensors and wireless technologies are trending technologies compared to unmanned aerial vehicles, serious games and the Internet of things. On the other hand, the study provided that the technologies are even more effective with integrated use like in the case of BIM and sensors or unmanned aerial vehicles. It was observed that the use of these technologies varies with respect to studies conducted in different countries. The study further revealed that the studies conducted on this topic are mostly published in some selected journals and international collaboration efforts in terms of researching the topic have been observed.

Originality/value

This study provides an extensive analysis of WoS and Scopus databases and an in-depth review of the use of digital technologies in construction safety. The review consists of the most recent studies showing the benefits of using such technologies and showing the usage on a systemic level from which both scientists and practitioners can benefit to devise new strategies in technology usage.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 25 April 2024

Ahmad Ghaith and Ma Huimin

Organizations working in high-hazard environments contribute significantly to modern society and the economy, not only for the valuable resources they hold but also for the…

Abstract

Purpose

Organizations working in high-hazard environments contribute significantly to modern society and the economy, not only for the valuable resources they hold but also for the indispensable products and services they provide, such as power generation, transportation and defense weapons. Therefore, the main purpose of this study is to develop a framework that outlines future research on systems safety and provides a better understanding of how organizations can effectively manage hazard events.

Design/methodology/approach

In this research, we developed the high hazard theory (HHT) and a theoretical framework based on the grounded theory method (GTM) and the integration of three established theoretical perspectives: normal accident theory (NAT), high reliability theory (HRT) and resilience engineering (RE) theory.

Findings

We focused on the temporal aspect of accidents to create a timeline showing the progression of hazard events and the factors contributing to safety and hazards in organizations. Given the limitations of the previous theories in providing a coherent explanation of hazard event escalation in high-hazard organizations (HHOs), we argue that the highlighted theories can be more complementary than contradictory regarding their standpoints on disasters and accident prevention.

Practical implications

A proper appreciation of the hazard nature of organizations can help reduce their susceptibility to failure, prevent outages and breakdowns of systems, identify areas for improvement and develop strategies to enhance performance.

Originality/value

By developing HHT, we contribute to systems safety research by developing a new, refined theory and enrich the theoretical debate. We also expand the understanding of scholars and practitioners about the characteristics of organizations working in high-hazard environments.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 29 January 2024

Hazwani Shafei, Rahimi A. Rahman and Yong Siang Lee

Policymakers are developing national strategic plans to encourage organizations to adopt Construction 4.0 technologies. However, organizations often adopt the recommended…

Abstract

Purpose

Policymakers are developing national strategic plans to encourage organizations to adopt Construction 4.0 technologies. However, organizations often adopt the recommended technologies without aligning with organizational vision. Furthermore, there is no prioritization on which Construction 4.0 technology should be adopted, including the impact of the technologies on different criteria such as safety and health. Therefore, this study aims to evaluate Construction 4.0 technologies listed in a national strategic plan that targets the enhancement of safety and health.

Design/methodology/approach

A list of Construction 4.0 technologies from a national strategic plan is evaluated using the fuzzy technique for order preference by similarity to ideal solution (TOPSIS) method. Then, the data are analyzed using reliability, fuzzy TOPSIS, normalization, Pareto, sensitivity, ranking and correlation analyses.

Findings

The analyses identified six Construction 4.0 technologies that are critical in enhancing safety and health: Internet of Things, autonomous construction, big data and predictive analytics, artificial Intelligence, building information modeling and augmented reality and virtualization. In addition, six pairs of Construction 4.0 technologies illustrate strong relationships.

Originality/value

This study contributes to the existing body of knowledge by ranking a list of Construction 4.0 technologies in a national strategic plan that targets the enhancement of safety and health. Decision-makers can use the study findings to prioritize the technologies during the adoption process. Also, to the best of the authors’ knowledge, this study is the first to evaluate the impact of Construction 4.0 technologies listed in a national strategic plan on a specific criterion.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 10 July 2023

Md. Mehrab Hossain, Shakil Ahmed, S.M. Asif Anam, Irmatova Aziza Baxramovna, Tamanna Islam Meem, Md. Habibur Rahman Sobuz and Iffat Haq

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be…

Abstract

Purpose

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be prone to errors and result in numerous fatalities annually. This study aims to address this issue by proposing a cloud-building information modeling (BIM)-based framework to provide real-time safety monitoring on construction sites to enhance safety practices and reduce fatalities.

Design/methodology/approach

This system integrates an automated safety tracking mobile app to detect hazardous locations on construction sites, a cloud-based BIM system for visualization of worker tracking on a virtual construction site and a Web interface to visualize and monitor site safety.

Findings

The study’s results indicate that implementing a comprehensive automated safety monitoring approach is feasible and suitable for general indoor construction site environments. Furthermore, the assessment of an advanced safety monitoring system has been successfully implemented, indicating its potential effectiveness in enhancing safety practices in construction sites.

Practical implications

By using this system, the construction industry can prevent accidents and fatalities, promote the adoption of new technologies and methods with minimal effort and cost and improve safety outcomes and productivity. This system can reduce workers’ compensation claims, insurance costs and legal penalties, benefiting all stakeholders involved.

Originality/value

To the best of the authors’ knowledge, this study represents the first attempt in Bangladesh to develop a mobile app-based technological solution aimed at reforming construction safety culture by using BIM technology. This has the potential to change the construction sector’s attitude toward accepting new technologies and cultures through its convenient choice of equipment.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 18 December 2023

Ibrahim S. Abotaleb, Yasmin Elhakim, Mohamed El Rifaee, Sahar Bader, Osama Hosny, Ahmed Abodonya, Salma Ibrahim, Mohamed Sherif, Abdelrahman Sorour and Mennatallah Soliman

The objective of this research is to propose an immersive framework that integrates virtual reality (VR) technology with directives international safety training certification…

Abstract

Purpose

The objective of this research is to propose an immersive framework that integrates virtual reality (VR) technology with directives international safety training certification bodies to enhance construction safety training, which eventually leads to safer construction sites.

Design/methodology/approach

The adopted methodology combines expert insights and experimentation to maximize the effectiveness of construction safety training. The first step was identifying key considerations for VR models such as motion sickness prevention and adult learning theories. The second step was developing a game-like VR model for safety training, with multiple hazards and scenarios based on the considerations of the previous step. After that, safety experts evaluated the model and provided valuable feedback on its alignment with international safety training practices. Finally, the developed model is tested by senior students, where the testing format followed the Institution of Occupational Safety and Health (IOSH) working safely exam structure.

Findings

An advanced immersive VR safety training model was developed based on extensive lessons learned from the literature, previous work and psychology-informed adult learning theories. Model testing – through focus groups and hands-on experimentation – demonstrated significant benefit of VR in upgrading and complementing traditional training methods.

Originality/value

The findings presented in this paper make a significant contribution to the field of safety training within the construction industry and the broader context of immersive learning experiences. It also fosters further exploration into immersive learning experiences across educational and professional contexts.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 March 2023

Carol K.H. Hon, Chenjunyan Sun, Kïrsten A. Way, Nerina L. Jimmieson, Bo Xia and Herbert C. Biggs

Mental health problems are a grave concern in construction. Although the distinction between high job demands and low job resources, as reflected in the Job Demands-Resources…

Abstract

Purpose

Mental health problems are a grave concern in construction. Although the distinction between high job demands and low job resources, as reflected in the Job Demands-Resources (JD–R) model, has been used to examine the extent to which psychosocial hazards influence mental health for construction practitioners, limited research has reflected on the nature of these psychosocial hazards by exploring experiences of site-based construction practitioners.

Design/methodology/approach

This study adopted a phenomenological approach to examine people’ experiences and thoughts of the complex phenomena of psychosocial hazards and mental health in construction. In total, 33 semi-structured interviews were undertaken with site-based construction practitioners in Australia to unveil construction-focused psychosocial hazards and their effects on mental health. The data were analysed via content analysis, employing an interpretation-focused coding strategy to code text and an individual-based sorting strategy to cluster codes.

Findings

Eighteen psychosocial hazards were identified based on the JD–R model. Six of these represented a new contribution, describing salient characteristics inherent to the construction context (i.e. safety concerns, exposure to traumatic events, job insecurity, task interdependency, client demand and contract pressure). Of particular importance, a number of interrelationships among psychosocial hazards emerged.

Originality/value

The significance of this qualitative research lies in elucidating psychosocial hazards and their complex interrelatedness in the context of the mental health of construction practitioners, enriching the understanding of this central health and safety issue in the high-risk setting of construction work. The findings contribute to addressing mental health issues in the Australian construction industry by identifying higher order control measures, thereby creating a mentally healthy workplace.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 January 2024

Ali Rashidi, George Lukic Woon, Miyami Dasandara, Mohsen Bazghaleh and Pooria Pasbakhsh

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers…

Abstract

Purpose

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers at a job site are paramount as they face both immediate and long-term risks such as falls and musculoskeletal disorders. To mitigate these dangers, sensor-based technologies have emerged as a crucial tool to promote the safety and well-being of workers on site. The implementation of real-time sensor data-driven monitoring tools can greatly benefit the construction industry by enabling the early identification and prevention of potential construction accidents. This study aims to explore the innovative method of prototype development regarding a safety monitoring system in the form of smart personal protective equipment (PPE) by taking advantage of the recent advances in wearable technology and cloud computing.

Design/methodology/approach

The proposed smart construction safety system has been meticulously crafted to seamlessly integrate with conventional safety gear, such as gloves and vests, to continuously monitor construction sites for potential hazards. This state-of-the-art system is primarily geared towards mitigating musculoskeletal disorders and preventing workers from inadvertently entering high-risk zones where falls or exposure to extreme temperatures could occur. The wearables were introduced through the proposed system in a non-intrusive manner where the safety vest and gloves were chosen as the base for the PPE as almost every construction worker would be required to wear them on site. Sensors were integrated into the PPE, and a smartphone application which is called SOTER was developed to view and interact with collected data. This study discusses the method and process of smart PPE system design and development process in software and hardware aspects.

Findings

This research study posits a smart system for PPE that utilises real-time sensor data collection to improve worksite safety and promote worker well-being. The study outlines the development process of a prototype that records crucial real-time data such as worker location, altitude, temperature and hand pressure while handling various construction objects. The collected data are automatically uploaded to a cloud service, allowing supervisors to monitor it through a user-friendly smartphone application. The worker tracking ability with the smart PPE can help to alleviate the identified issues by functioning as an active warning system to the construction safety management team. It is steadily evident that the proposed smart PPE system can be utilised by the respective industry practitioners to ensure the workers' safety and well-being at construction sites through monitoring of the workers with real-time sensor data.

Originality/value

The proposed smart PPE system assists in reducing the safety risks posed by hazardous environments as well as preventing a certain degree of musculoskeletal problems for workers. Ultimately, the current study unveils that the construction industry can utilise cloud computing services in conjunction with smart PPE to take advantage of the recent advances in novel technological avenues and bring construction safety management to a new level. The study significantly contributes to the prevailing knowledge of construction safety management in terms of applying sensor-based technologies in upskilling construction workers' safety in terms of real-time safety monitoring and safety knowledge sharing.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 4 January 2024

Jonas Ekow Yankah, Kofi Owusu Adjei and Chris Kurbom Tieru

Robotics and automation are successful in construction, health and safety, but costs and expertise hinder their use in developing nations. This study examined mobile apps as a…

Abstract

Purpose

Robotics and automation are successful in construction, health and safety, but costs and expertise hinder their use in developing nations. This study examined mobile apps as a more accessible and affordable alternative.

Design/methodology/approach

This descriptive study explored the use of mobile apps in construction, health and safety management. It used a literature review to identify their availability, accessibility, and capabilities. The study consisted of four five stages: searching for relevant apps, selecting them based on versatility, examining their specific functions, removing untested apps and discussing their functions based on empirical studies.

Findings

A comprehensive literature review identified 35 mobile apps that are relevant to health and safety management during construction. After rigorous analysis, eight apps were selected for further study based on their relevance, user friendliness and compliance with safety standards. These apps collectively serve 28 distinct functions, including first-aid training and administration, safety compliance and danger awareness, safety education and training, hazard detection and warnings.

Practical implications

This study suggests that mobile apps can provide a cost-effective and readily accessible alternative to robotics and automation in health and safety management in construction. Further research is needed to accurately assess the efficacy of these apps in real-world conditions.

Originality/value

This study explored the use of apps in health and safety management, highlighting their diverse capabilities and providing a framework for project managers, contractors and safety officers to select suitable apps.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

1 – 10 of 197