Search results

1 – 4 of 4
Article
Publication date: 19 December 2023

Chetan Tembhurkar, Sachin Ambade, Ravinder Kataria, Jagesvar Verma and Abhijeet Moon

This paper aims to examine dissimilar joints for various applications in chemical, petrochemical, oil, gas, shipbuilding, defense, rail and nuclear industry.

42

Abstract

Purpose

This paper aims to examine dissimilar joints for various applications in chemical, petrochemical, oil, gas, shipbuilding, defense, rail and nuclear industry.

Design/methodology/approach

This study examined the effects of cold metal transfer welding on stainless steel welds for 316L austenitic and 430 ferritic dissimilar welds with ER316L, ER309L and without (autogenous) fillers. The microstructural observation was done with an optical microscope. The mechanical test was done to reveal the strength, hardness and toughness of the joint. The electrochemical polarization tests were done to reveal intergranular and pitting corrosion in the dissimilar joints.

Findings

This microstructural study shows the presence of austenitic and ferritic phases with vermicular ferrite for ER309L filler weld, and for ER316L filler weld specimen shows predominately martensitic phase in the weld region, whereas the autogenous weld shows lathy ferrite mixed with martensitic phase. Mechanical test results indicated that filler welded specimen (ER316L and ER309L) has relatively higher strength and hardness than the autogenous weld, whereas ER316L filler weld exhibited the highest impact toughness than ER309L filler weld and lowest in autogenous weld. The electrochemical corrosion results displayed the highest degree of sensitization (DOS) in without filler welded specimen (45.62%) and lower in case of filler welded specimen ER309L (4.95%) and least in case of ER316L filler welded specimen (3.51%). The high DOS in non-filler welded specimen is correlated with the chromium carbide formation. The non-filler welded specimen shows the highest pitting corrosion attack as compared to the ER316L filler weld specimen and relatively better in ER309L filler welded specimen. The highest pitting corrosion resistance is related with the high chromium content in ER309L composition.

Originality/value

This experimental study is original and conducted with 316L and 430 stainless steel with ER316L, ER309 and without fillers, which will help the oil, shipbuilding and chemical industries.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 December 2023

Nivin Vincent and Franklin Robert John

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to…

Abstract

Purpose

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to fulfil future needs; to determine the viability of particular strategies and actions performed to increase the process efficiency of electrical discharge machining; and to uphold the values of sustainability in the nonconventional manufacturing sector and to identify future works in this regard.

Design/methodology/approach

A thorough analysis of numerous experimental studies and findings is conducted. This prominent nontraditional machining process’s potential machinability and sustainability challenges are discussed, along with the current research to alleviate them. The focus is placed on modifications to the dielectric fluid, choosing affordable substitutes and treating consumable tool electrodes.

Findings

Trans-esterified vegetable oils, which are biodegradable and can be used as a substitute for conventional dielectric fluids, provide pollution-free machining with enhanced surface finish and material removal rates. Modifying the dielectric fluid with specific nanomaterials could increase the machining rate and demonstrate a decrease in machining flaws such as micropores, globules and microcracks. Tool electrodes subjected to cryogenic treatment have shown reduced tool metal consumption and downtime for the setup.

Practical implications

The findings suggested eco-friendly machining techniques and optimized control settings that reduce energy consumption, lowering operating expenses and carbon footprints. Using eco-friendly dielectrics, including vegetable oils or biodegradable dielectric fluids, might lessen the adverse effects of the electrical discharge machine operations on the environment. Adopting sustainable practices might enhance a business’s reputation with the public, shareholders and clients because sustainability is becoming increasingly significant across various industries.

Originality/value

A detailed general review of green nontraditional electrical discharge machining process is provided, from high-quality indexed journals. The findings and results contemplated in this review paper can lead the research community to collectively apply it in sustainable techniques to enhance machinability and reduce environmental effects.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 May 2023

Upama Dey, Aparna Duggirala and Souren Mitra

Aluminium alloys can be used as lightweight and high-strength materials in combination with the technology of laser beam welding, an efficient joining method, in the manufacturing…

Abstract

Purpose

Aluminium alloys can be used as lightweight and high-strength materials in combination with the technology of laser beam welding, an efficient joining method, in the manufacturing of automotive parts. The purposes of this paper are to conduct laser welding experiments with Al2024 in the lap joint configuration, model the laser welding process parameters of Al2024 alloys and use propounded models to optimize the process parameters.

Design/methodology/approach

Laser welding of Al2024 alloy has been conducted in the lap joint configuration. Then, the influences of explanatory variables (laser peak power, scanning speed and frequency) on outcome variables (weld width [WW], throat length [TL] and breaking load [BL]) have been investigated with Poisson regression analysis of the data set derived from experimentation. Thereafter, a multi-objective genetic algorithm (MOGA) has been used using MATLAB to find the optimum solutions. The effects of various input process parameters on the responses have also been analysed using response surface plots.

Findings

The promulgated statistical models, derived with Poisson regression analysis, are evinced to be well-fit ones using the analysis of deviance approach. Pareto fronts have been used to demonstrate the optimization results, and the maximized load-bearing capacity is computed to be 1,263 N, whereas the compromised WW and TL are 714 µm and 760 µm, respectively.

Originality/value

This work of conducting laser welding of lap joint of Al2024 alloy incorporating the Taguchi method and optimizing the input process parameters with the promulgated statistical models proffers a neoteric perspective that can be useful to the manufacturing industry.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Access

Year

Last 12 months (4)

Content type

Earlycite article (4)
1 – 4 of 4