Search results

1 – 5 of 5
Article
Publication date: 6 May 2024

Shan Gao, Bin Wang, Xinjie Yao and Quan Yuan

This paper aims to characterize the surface film formed on Alloys 800 and 690 in chloride and thiosulfate-containing solution at 300°C.

Abstract

Purpose

This paper aims to characterize the surface film formed on Alloys 800 and 690 in chloride and thiosulfate-containing solution at 300°C.

Design/methodology/approach

Alloy 800 and 690 were immersed in chloride and thiosulfate-containing solution at 300°C up to five days, and then the surface film was analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray spectrometers (EDX).

Findings

Through static immersion experiments in a high-temperature and high-pressure water environment, the alloy samples covered by surface film after five days of immersion were obtained. The morphology of the surface film was characterized at both horizontal and cross-sectional scales using SEM and focused ion beam-TEM techniques. It was observed that due to the influence of the quartz lining, the surface film primarily exhibited a bilayered structure. The first layer contained a significant amount of SiO2, with a higher content of metal hydroxides compared to metal oxides. The second layer was predominantly composed of Fe, Ni and Cr, with a higher content of metal oxides compared to metal hydroxides.

Originality/value

The results showed that the materials of the lining of the autoclave could significantly influence the film composition of the tested material, which should be paid attention when analyzing the corrosion mechanism at high temperature.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 September 2023

Raj Shah, Nikhil Pai and Andreas Rosenkranz

This paper aims at analyzing the potential of new materials in magnesium-ion batteries (MIBs) with a particular focus on options for electrodes and electrolyte solutions while…

Abstract

Purpose

This paper aims at analyzing the potential of new materials in magnesium-ion batteries (MIBs) with a particular focus on options for electrodes and electrolyte solutions while also carefully considering the barriers to their entry in this application for MIBs, with a particular focus on the material options for electrodes and electrolyte solutions.

Design/methodology/approach

Potential materials for MIBs were examined for sustainability, safety and efficiency to develop the sustainable and well-working MIBs.

Findings

For anode materials, the use of Mg-bismuth alloys has shown promise, whereas Chevrel phases or layered molybdenum disulfide have potential as cathode materials. Potential electrolytes range from traditional materials to the development of tailored solid-state and liquid-based options.

Originality/value

This study considers the growing need for Mg-based ion batteries, as well as the need for suitable electrode and electrolyte materials and analyzes suitable options.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0081/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 October 2023

Oluseyi Julius Adebowale and Justus Ngala Agumba

The United Nations has demonstrated a commitment to preserving the ecosystem through its 2030 sustainable development goals agenda. One crucial objective of these goals is to…

Abstract

Purpose

The United Nations has demonstrated a commitment to preserving the ecosystem through its 2030 sustainable development goals agenda. One crucial objective of these goals is to promote a healthy ecosystem and discourage practices that harm it. Building materials production significantly contributes to the emissions of greenhouse gases. This poses a threat to the ecosystem and prompts a growing demand for sustainable building materials (SBMs). The purpose of this study is to investigate SBMs to determine their utilization in construction operations and the potential impact their application could have on construction productivity.

Design/methodology/approach

A systematic review of the existing literature in the field of SBMs was conducted for the study. The search strings used were “sustainable” AND (“building” OR “construction”) AND “materials” AND “productivity”. A total of 146 articles were obtained from the Scopus database and reviewed.

Findings

Bio-based, cementitious and phase change materials were the main categories of SBMs. Materials in these categories have the potential to substantially contribute to sustainability in the construction sector. However, challenges such as availability, cost, expertise, awareness, social acceptance and resistance to innovation must be addressed to promote the increased utilization of SBMs and enhance construction productivity.

Originality/value

Many studies have explored SBMs, but there is a dearth of studies that address productivity in the context of SBMs, which leaves a gap in understanding. This study addresses this gap by drawing on existing studies to determine the potential implications that using SBMs could have on construction productivity.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 17 April 2023

Kawaljit Singh Randhawa

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and…

Abstract

Purpose

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and wettability.

Design/methodology/approach

This review paper presents the various types of advanced ceramic materials according to their compounding elements, fabrication techniques of advanced ceramic powders as well as their consolidation, their characteristics, applications and wetting properties. Hydrophobic/hydrophilic properties of advanced ceramic materials are described in the paper with their state-of-the-art application areas. Optical properties of fine ceramics with their intrinsic characteristics are also presented within. Special focus is given to the brief description of application-based manipulation of wetting properties of advanced ceramics in the paper.

Findings

The study of wetting/hydrophobicity/hydrophilicity of ceramic materials is important by which it can be further modified to achieve the required applications. It also makes some sense that the material should be tested for its wetting properties when it is going to be used in some important applications like biomedical and dental. Also, these advanced ceramics are now often used in the fabrication of filters and membranes to purify liquid/water so the study of wetting characteristics of these materials becomes essential. The optical properties of advanced ceramics are equally making them suitable for many state-of-the-art applications. Dental, medical, imaging and electronics are the few sectors that use advanced ceramics for their optical properties.

Originality/value

This review paper includes various advanced ceramic materials according to their compounding elements, different fabrication techniques of powders and their consolidation, their characteristics, various application area and hydrophobic/hydrophilic properties.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 October 2023

Juan Antonio Giménez Espín, Micaela Martínez-Costa and Daniel Jiménez Jiménez

The purpose of the study has been to fill the gap detected in the literature and to analyze whether the application of management of R&D in accordance with UNE 166002:2021 allows…

Abstract

Purpose

The purpose of the study has been to fill the gap detected in the literature and to analyze whether the application of management of R&D in accordance with UNE 166002:2021 allows companies to obtain higher product innovation and better performance, specifically incremental and radical product innovations.

Design/methodology/approach

The population used in this study included Spanish manufacturing organizations that were active, had more than 50 employees according to the SABI. The information was collected through a structured questionnaire previously tested using a company specializing in the sector under the supervision of the authors. A total of 1,154 companies were randomly contacted in order to reach an acceptable number of 225 valid questionnaires. The data analysis has been carried out with structural equation methodology.

Findings

The results obtained with a sample of 225 companies show that the application of this standard for innovation management promotes the development of new products with incremental and radical changes, and improves business performance. It has also been found that incremental and radical product innovations mediate the relationship between this standard and performance.

Research limitations/implications

Firstly, the survey is only addressed to the company's operations manager. Secondly, the sample used is cross-sectional, whereas innovation management implies a broad implementation process.

Practical implications

Managers must know that radical and incremental product innovation can improve the company's operational performance. And the most direct implication of this work is that, those companies that are committed to the development of innovations should seriously consider the application of the principles incorporated in Standard 166,002, as an instrument that improves the results of innovation in the organization. Since this SIMS promotes both types of innovations, it improves results directly and indirectly through these product innovations.

Originality/value

The existing literature indicates that no empirical study has focused on the benefits of this SIMSs for innovation and BP. This paper fills this gap detected in the literature and analyzes the results of the implementation of this standard on incremental and radical product innovations and business performance.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

1 – 5 of 5