Search results

1 – 10 of 85
Article
Publication date: 18 April 2017

Pieter Johannes Theron Conradie, Dimitri Dimitrov, Gert Adriaan Oosthuizen, Philip Hugo and Mike Saxer

The purpose of this paper is to investigate the combination of selective laser melting (SLM) and 5-axis CNC milling to produce parts from titanium powder. The aim is to achieve a…

Abstract

Purpose

The purpose of this paper is to investigate the combination of selective laser melting (SLM) and 5-axis CNC milling to produce parts from titanium powder. The aim is to achieve a more resource-efficient manufacturing process by reducing material wastage and machining time, while adhering to quality requirements.

Design/methodology/approach

A benchmark titanium aerospace component is manufactured with two different approaches using subtractive and additive manufacturing technologies. The first component is produced from a solid billet using only 5-axis CNC milling. The second component is grown from powder using SLM to produce a net-shaped part of which the final shape and part accuracy are achieved through 5-axis CNC milling. The potential saving of material and machining time of the process combination is evaluated by comparing it to the conventional purely CNC approach. The form accuracy, surface finish, mechanical properties and tool wear for the two processes are also compared.

Findings

The results show that the process combination can be used to produce Ti components that adhere to aerospace standards. With the process combination, a material saving of 87 per cent was achieved along with a reduction of 21 per cent in machining time. Further improvements are possible using optimized SLM build and machining strategies.

Originality/value

This paper presents the results of a resource efficiency assessment on the combination of SLM and 5-axis CNC milling for the titanium alloy, Ti6Al4V. It is expected that this process combination can make a significant contribution towards reducing material wastage and machining time for aerospace applications.

Details

Rapid Prototyping Journal, vol. 23 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 August 2022

Jayaprakash Sharma Panchagnula and Suryakumar Simhambhatla

Amongst various additive manufacturing (AM) techniques for realizing the complex metallic objects, weld-deposition (arc)-based directed energy AM technique is attaining more focus…

Abstract

Purpose

Amongst various additive manufacturing (AM) techniques for realizing the complex metallic objects, weld-deposition (arc)-based directed energy AM technique is attaining more focus over commercially available powder bed fusion techniques. This is because of the capability of high deposition rates, high power and material utilization, simpler setup and less initial investment of arc-based AM. Nevertheless, realization of sudden overhanging features through arc-based weld-deposition techniques is still a challenging task because of the necessity of support structures. This paper aims to describe a novel methodology for producing complex metallic objects with sudden overhangs without using supports.

Design/methodology/approach

The realization of complex metallic objects with sudden overhangs (without using supports) is possible by reorienting the workpiece and/or deposition head at every instance using higher order kinematics (5-axis setup) to make sure the overhanging feature is in line to the deposition direction.

Findings

In the absence of universally applicable support mechanism, deposition of overhanging features remains one of the main challenges in AM. A separate support structure is often necessary for depositing the overhanging features. Small overhang features are usually possible by a little overextension from the previous layer. Nevertheless, deposition of large gradually varying overhangs and sudden overhangs with complex features without support structures is a challenging task in any AM process. This demands higher order kinematics which calls for inclined and/or orthogonal slicing and area filling.

Originality/value

The unique aspect of this paper is the identification of sudden overhang feature from a tessellated computer-aided design (.stl) file and generates an orthogonal tool path for deposition for sudden overhangs. An in-house MATLAB routine has been developed and presented for performing the same. This methodology helps in realization of sudden overhangs without use of supports. To validate proposed technique, various illustrative case studies have been taken up for deposition.

Article
Publication date: 1 June 1993

Replacing jet engine compressor blades (by all the world's airlines) is both a time‐consuming and costly exercise. But help is on the way. A new technique called adaptive milling

Abstract

Replacing jet engine compressor blades (by all the world's airlines) is both a time‐consuming and costly exercise. But help is on the way. A new technique called adaptive milling has now been developed by two British companies which will enable existing but eroded blades to be repaired in less time than it takes to make a traditional cup of char!

Details

Aircraft Engineering and Aerospace Technology, vol. 65 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 June 1991

ON the shop floor at Dowty Fuel Systems' Cheltenham factory, multi‐axis CNC (computer numerically controlled) machine tools produce the main bodies of the digital engine control…

Abstract

ON the shop floor at Dowty Fuel Systems' Cheltenham factory, multi‐axis CNC (computer numerically controlled) machine tools produce the main bodies of the digital engine control system for Pratt & Whitney's PW305 engine. These advanced machines are now controlled directly from the Matra Datavision EUCLID‐IS CADCAM system, following a major advance towards computer integrated manufacture.

Details

Aircraft Engineering and Aerospace Technology, vol. 63 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 2 January 2018

Michal Gdula, Jan Burek, Lukasz Zylka and Marcin Plodzien

The purpose of this paper is to determine the influence of a toroidal cutter axis orientation and a variable radius of curvature of the machined contour of sculptured surface on…

Abstract

Purpose

The purpose of this paper is to determine the influence of a toroidal cutter axis orientation and a variable radius of curvature of the machined contour of sculptured surface on the five-axes milling process. Simulation and experimental research performed in this work are aimed to determine the relationship between the parameters of five-axes milling process and the shape and dimensional accuracy of curved outline of Inconel 718 alloy workpiece.

Design/methodology/approach

A subject of research are sculptured surfaces of the turbine blade. Simulation research was performed using the method of direct mapping tools in the CAD environment. The machining research was carried out with the use of multi-axis machining center DMU 100 monoBLOCK DMG, equipped with rotating dynamometer to measure the components of the cutting force. To control the shape and dimensional accuracy, the coordinate measuring machine ZEISS ACCURA II was used.

Findings

In this paper, the effect of the toroidal cutter axis orientation and the variable radius of curvature of the machined contour on the parameters of five-axes milling process and the accuracy of the sculptured surfaces was determined.

Practical implications

Five-axes milling with the use of a toroidal cutter is found in the aviation industry, where sculptured surfaces of the turbine blades are machined. The results of the research allow more precise planning of five-axes milling and increase of the turbine blades accuracy.

Originality/value

This paper significantly complements the current state of knowledge in the field of five-axes milling of turbine blades in terms of their accuracy.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 December 2005

Oguzhan Yilmaz, Dominic Noble, Nabil N.Z. Gindy and Jian Gao

This paper discusses research on machining and repairing of turbomachinery components which are generally complex geometries and made up of difficult to machine materials (nickel…

2781

Abstract

Purpose

This paper discusses research on machining and repairing of turbomachinery components which are generally complex geometries and made up of difficult to machine materials (nickel super alloys or titanium alloys).

Design/methodology/approach

The approaches, methods and methodologies used for machining and repairing of blades are reviewed as well as the comparisons between them are made.

Findings

Particularly, the most recent blade machining and repair techniques using high flexible machine tools and industrial robots, are mentioned.

Practical implications

The limitation of the approaches, methods and methodologies are given and supported by real practical application examples.

Originality/value

This paper presents a state of the art review of research in machining and repairing of turbomachinery components, which have been mainly done in the last decade. The paper act as a reference, gathering the works about turbomachinery components from a manufacturing point of view.

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 20 April 2015

Suryakumar Simhambhatla and K.P. Karunakaran

– This paper aims to develop build strategies for rapid manufacturing of components of varying complexity with the help of illustration.

1059

Abstract

Purpose

This paper aims to develop build strategies for rapid manufacturing of components of varying complexity with the help of illustration.

Design/methodology/approach

The build strategies are developed using a hybrid layered manufacturing (HLM) setup. HLM, an automatic layered manufacturing process for metallic objects, combines the best features of two well-known and economical processes, viz., arc weld-deposition and milling. Depending on the geometric complexity of the object, the deposition and/or finish machining may involve fixed (3-axis) or variable axis (5-axis) kinematics.

Findings

Fixed axis (3-axis) kinematics is sufficient to produce components free of undercuts and overhanging features. Manufacture of components with undercuts can be categorized into three methods, viz., those that exploit the inherent overhanging ability, those that involve blinding of the undercuts in the material deposition stage and those that involve variable axis kinematics for aligning the overhang with the deposition direction.

Research limitations/implications

Although developed using the HLM setup, these generic concepts can be used in a variety of metal deposition processes.

Originality/value

This paper describes the methodology for realizing undercut features of varying complexity and also chalks out the procedure for their manufacture with the help of case studies for each approach.

Details

Rapid Prototyping Journal, vol. 21 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2003

Thomas Himmer, Anja Techel, Steffen Nowotny and Eckhard Beyer

Time reduction and quick geometrical changes of complex components and tools are currently the most important demands in product development. The manufacturing process presented…

1280

Abstract

Time reduction and quick geometrical changes of complex components and tools are currently the most important demands in product development. The manufacturing process presented in this paper is based on multiple additive and subtractive technologies such as laser cutting, laser welding, direct laser metal deposition and CNC milling. The process chain is similar to layer‐based Rapid Prototyping Techniques. In the first step, the 3D CAD geometry is sliced into layers by a specially developed software. These slices are cut by high speed laser cutting and then joined together. In this way laminated tools or parts are built. To improve surface quality and to increase wear resistance a CNC machining center is used. The system consists of a CNC milling machine, in which a 3 kW Nd:YAG laser, a coaxial powder nozzle and a digitizing system are integrated.

Details

Rapid Prototyping Journal, vol. 9 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 January 2020

Matteo Perini, Paolo Bosetti and Nicolae Balc

This paper aims to decrease the cost of repairing operations, of the damaged mechanical components, by enabling the strong automation of the process and the reduction of manual…

347

Abstract

Purpose

This paper aims to decrease the cost of repairing operations, of the damaged mechanical components, by enabling the strong automation of the process and the reduction of manual labor. The main purpose of the hybrid repair process is to restore the original shape of the mechanical parts, by adding and removing material according to the mismatch between the damaged object and the virtual model, to restore its geometrical properties.

Design/methodology/approach

The DUOADD software tool translates the information collected from a 3D scanner into a digital computer aided design solid model, which can be manipulated through Siemens NX computer aided manufacturing (CAM), to obtain the tool paths, for the Direct Laser Deposition (DLD) technology. DUOADD uses octrees to effectively analyze the damaged region of the mechanical part and then to discretize the volume to be added to export CAM-compatible information as a 3D model, for additive operations.

Findings

DUOADD is the missing link between two valuable existing technologies, 3D scan and CAM for additive manufacturing, which can now be connected together, to perform automatic repairing.

Research limitations/implications

A trade-off between resolution and computational effort needs to be achieved.

Practical implications

DUOADD output is a STEP file, transferred to the CAM software to create the additive and the milling tool paths. The maximum deviation was 40 micrometers, as compared with the original solid model.

Originality/value

The paper presents a new procedure and new software tools (DUOADD), for the automation of damaged objects restoration process. DUOADD software provides suitable data for using a 5-axis computer numerical control (CNC) milling machine equipped with a DLD tool.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 April 2000

125

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 72 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 85