Search results

1 – 10 of 129
Article
Publication date: 1 July 2024

Furkan Polat and Sevilay Demirkesen

The main purpose of this study is to reveal the degree of association between lean, building information modeling (BIM) and construction project success. The study further intends…

Abstract

Purpose

The main purpose of this study is to reveal the degree of association between lean, building information modeling (BIM) and construction project success. The study further intends to provide strategies for high and low associations of the factors.

Design/methodology/approach

Lean construction and BIM are two important applications that have recently gained popularity in terms of enhancing project success. Considering this impact, this study investigates the synergy between lean construction and BIM and determines to what extent these two contribute to the success of the projects. As a first step, lean, BIM and project success were examined based on an in-depth literature review. In the second stage, a structural equation model (SEM) was established to reflect the relationship among these three through hypotheses. Then, a questionnaire was designed and administered to the construction professionals experienced in both lean and BIM implementation. The SEM was tested using Analysis of Moment Structures (AMOS), an SPSS tool.

Findings

The results indicated that lean implementation has a significant and positive impact on BIM implementation and project success. On the other hand, BIM implementation had a lower significant impact on project success than lean implementation construct.

Research limitations/implications

The results of this study can be used by both policymakers and industry practitioners in terms of developing strategies for effectively using both lean and BIM. The researchers can further develop other implementation models to investigate whether these concepts are more effective in increasing project success when used integratively.

Originality/value

This study considers both the impact of lean and BIM on project success through input from construction practitioners working on large projects. This way, the study fosters the use of lean, BIM or lean–BIM together in construction projects to enhance project success.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 January 2023

Bruno Falcón Silveira and Dayana Bastos Costa

Several studies have addressed the use of four-dimensional (4D) building information modeling (BIM) for construction management. However, the automation of the processes for…

Abstract

Purpose

Several studies have addressed the use of four-dimensional (4D) building information modeling (BIM) for construction management. However, the automation of the processes for generating 4D models and their integrated use with Location-Based Planning and the Last Planner® System is not well discussed. Therefore, this paper aims to develop a method for automating the generation and use of 4D BIM models integrated with Location-Based Planning and Last Planner® System supporting project control cycles.

Design/methodology/approach

The research strategy adopted was Design Science Research. The automated method for using the 4D models was developed and refined in two residential building projects in Brazil, along with 31 meetings and involving 11 direct users. The assessment of the proposed method focuses on four constructs: the impact of process automation, the impact on the identification and assessment of site progress and the planning process, ease of adoption and utility of the proposed method.

Findings

The results of this paper indicated increased adherence between planned and executed through an automated method for using the 4D models. The established routines enabled automating the link between the planning levels and the three-dimensional (3D) model, providing a more agile and updated data source and achieving 92.8% of user satisfaction regarding the deadline and frequency of delivery of the 4D model reports. Moreover, this study identified the relationships between the processes of the method proposed and Digital Models.

Originality/value

The primary scientific value achieved in this study is creating a method for automating processes and simplifying steps for the generation and use of 4D BIM models in the production planning and control cycles during the construction phase.

Details

Construction Innovation , vol. 24 no. 4
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 27 August 2024

Sami Shahid, Ziyang Zhen and Umair Javaid

Multi-unmanned aerial vehicle (UAV) systems have succeeded in gaining the attention of researchers in diversified fields, especially in the past decade, owing to their capability…

Abstract

Purpose

Multi-unmanned aerial vehicle (UAV) systems have succeeded in gaining the attention of researchers in diversified fields, especially in the past decade, owing to their capability to operate in complex scenarios in a coordinated manner. Path planning for UAV swarms is a challenging task depending upon the environmental conditions, the limitations of fixed-wing UAVs and the swarm constraints. Multiple optimization techniques have been studied for path-planning problems. However, there are local optimum and convergence rate problems. This study aims to propose a multi-UAV cooperative path planning (CoPP) scheme with four-dimensional collision avoidance and simultaneous arrival time.

Design/methodology/approach

A new two-step optimization algorithm is developed based on multiple populations (MP) of disturbance-based modified grey-wolf optimizer (DMGWO). The optimization is performed based on the objective function subject to multi constraints, including collision avoidance, same minimum time of flight and threat and obstacle avoidance in the terrain while meeting the UAV constraints. Comparative simulations using two different algorithms are performed to authenticate the proposed DMGWO.

Findings

The critical features of the proposed MP-DMGWO-based CoPP algorithm are local optimum avoidance and rapid convergence of the solution, i.e. fewer iterations as compared to the comparative algorithms. The efficiency of the proposed method is evident from the comparative simulation results.

Originality/value

A new algorithm DMGWO is proposed for the CoPP problem of UAV swarm. The local best position of each wolf is used in addition to GWO. Besides, a disturbance is introduced in the best solutions for faster convergence and local optimum avoidance. The path optimization is performed based on a newly designed objective function that depends upon multiple constraints.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 June 2024

Jhumana Akter, Shuvo Dip Datta, Mobasshira Islam, Bassam A. Tayeh, Sadia Ahmmed Sraboni and Niloy Das

The purpose of this research paper is to investigate and evaluate the impacts of utilising Building Information Modelling (BIM) as a lean management tool in Bangladesh's…

Abstract

Purpose

The purpose of this research paper is to investigate and evaluate the impacts of utilising Building Information Modelling (BIM) as a lean management tool in Bangladesh's construction management field. The paper explores how adopting BIM as a lean management tool can improve and expedite a number of processes in building projects, which will ultimately increase project success, cost-effectiveness and efficiency.

Design/methodology/approach

A comprehensive survey was conducted to investigate how BIM deployment as a lean management tool affected project outcomes. This research involved a structured survey amongst construction professionals and a case study on a real project in Bangladesh to assess the effects of using BIM as a lean management tool. The data collected from 112 respondents were analysed statistically and qualitatively to identify the effect of BIM as a lean management tool. Additionally, several software tools, including Revit, Navisworks, Design Review and BIM 360, were used to compare conventional and BIM-based methods.

Findings

The research findings demonstrate that utilising BIM practices improves the quality and safety of construction in Bangladesh. The “Improving the quality of construction” (RII = 0.732) achieved the highest rank in the questionnaire survey. In addition, the case study represents that the construction industry can benefit from BIM-based project management. The BIM implementation can shorten the design process by over 50% and save up to 1.5 weeks by minimising idling time. By applying BIM, it is possible to avoid a price rise of roughly 2.5% and a delay of about 11.9% of the original contract period.

Practical implications

The significance of the results goes beyond the direct advantages of the project's achievements. The successful integration of BIM as a lean management tool in Bangladesh's construction sector suggests transformative potential for the industry. The enhanced coordination and decreased errors point to a future where construction projects can achieve higher levels of precision and reliability. The improved efficiency observed implies a more sustainable and cost-effective future for construction projects in the region.

Originality/value

The research provides a unique perspective on the impact of BIM implementation on project outcomes. It includes a comprehensive survey on BIM adoption as a lean management tool, gathering real-world experiences from construction professionals in Bangladesh. The case study explores the practical implications and advantages of implementing BIM in construction projects. By comparing conventional methods with BIM-based approaches and utilising BIM software, the study contributes value to the construction sector.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 14 June 2024

Volkan Yasin Pehlivanoglu and Perihan Pehlivanoğlu

The purpose of this paper is to present an efficient path planning method for the multi-UAV system in target coverage problems.

Abstract

Purpose

The purpose of this paper is to present an efficient path planning method for the multi-UAV system in target coverage problems.

Design/methodology/approach

An enhanced particle swarm optimizer (PSO) is used to solve the path planning problem, which concerns the two-dimensional motion of multirotor unmanned aerial vehicles (UAVs) in a three-dimensional environment. Enhancements include an improved initial swarm generation and prediction strategy for succeeding generations. Initial swarm improvements include the clustering process managed by fuzzy c-means clustering method, ordering procedure handled by ant colony optimizer and design vector change. Local solutions form the foundation of a prediction strategy.

Findings

Numerical simulations show that the proposed method could find near-optimal paths for multi-UAVs effectively.

Practical implications

Simulations indicate the proposed method could be deployed for autonomous multi-UAV systems with target coverage problems.

Originality/value

The proposed method combines intelligent methods in the early phase of PSO, handles obstacle avoidance problems with a unique approach and accelerates the process by adding a prediction strategy.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 March 2023

Esra Dobrucali, Emel Sadikoglu, Sevilay Demirkesen, Chengyi Zhang, Algan Tezel and Isik Ates Kiral

Construction is a risky industry. Therefore, organizations are seeking ways towards improving their safety performance. Among these, the integration of technology into health and…

1034

Abstract

Purpose

Construction is a risky industry. Therefore, organizations are seeking ways towards improving their safety performance. Among these, the integration of technology into health and safety leads to enhanced safety performance. Considering the benefits observed in using technology in safety, this study aims to explore digital technologies' use and potential benefits in construction health and safety.

Design/methodology/approach

An extensive bibliometrics analysis was conducted to reveal which technologies are at the forefront of others and how these technologies are used in safety operations. The study used two different databases, Web of Science (WoS) and Scopus, to scan the literature in a systemic way.

Findings

The systemic analysis of several studies showed that the digital technologies use in construction are still a niche theme and need more assessment. The study provided that sensors and wireless technology are of utmost importance in terms of construction safety. Moreover, the study revealed that artificial intelligence, machine learning, building information modeling (BIM), sensors and wireless technologies are trending technologies compared to unmanned aerial vehicles, serious games and the Internet of things. On the other hand, the study provided that the technologies are even more effective with integrated use like in the case of BIM and sensors or unmanned aerial vehicles. It was observed that the use of these technologies varies with respect to studies conducted in different countries. The study further revealed that the studies conducted on this topic are mostly published in some selected journals and international collaboration efforts in terms of researching the topic have been observed.

Originality/value

This study provides an extensive analysis of WoS and Scopus databases and an in-depth review of the use of digital technologies in construction safety. The review consists of the most recent studies showing the benefits of using such technologies and showing the usage on a systemic level from which both scientists and practitioners can benefit to devise new strategies in technology usage.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 February 2023

Sara Rashidian, Robin Drogemuller, Sara Omrani and Fereshteh Banakar

The application of integrated project delivery (IPD) in conjunction with building information modeling (BIM) and Lean Construction (LC) as the efficient method for improving…

Abstract

Purpose

The application of integrated project delivery (IPD) in conjunction with building information modeling (BIM) and Lean Construction (LC) as the efficient method for improving collaboration and delivering construction projects has been acknowledged by construction academics and professionals. Once organizations have fully embraced BIM, IPD and LC integration, a measurement tool such as a maturity model (MM) for benchmarking their progress and setting realistic goals for continuous improvement will be required. In the context of MMs literature, however, no comprehensive analysis of these three construction management methods has been published to reveal the current trends and common themes in which the models have approached each other.

Design/methodology/approach

Therefore, this study integrates systematic literature review (SLR) and thematic analysis techniques to review and categorize the related MMs; the key themes in which the interrelationship between BIM, IPD and LC MMs has been discussed and conceptualized in the attributes; the shared characteristics of the existing BIM, IPD and LC MMs, as well as their strengths and limitations. The Preferred Reporting Items for Systematic Reviews (PRISMA) method has been used as the primary procedure for article screening and reviewing published papers between 2007 and 2022.

Findings

Despite the growth of BIM, IPD and LC integration publications and acknowledgment in the literature, no MM has been established that holistically measures BIM, IPD and LC integration in an organization. This study identifies five interrelated and overlapping themes indicative of the collaboration of BIM, IPD and LC in existing MMs' structure, including customer satisfaction, waste minimization, Lean practices and cultural and legal aspects. Furthermore, the MMs' common characteristics, strengths and limitations are evaluated to provide a foundation for developing future BIM, IPD and LC-related MMs.

Practical implications

This paper examines the current status of research and the knowledge gaps around BIM, IPD and LC MMs. In addition, the highlighted major themes serve as a foundation for academics who intend to develop integrated BIM, IPD, and LC MMs. This will enable researchers to build upon these themes and establish a comprehensive list of maturity attributes fulfilling the BIM, IPD and LC requirements and principles. In addition, the MMs' BIM, IPD and LC compatibility themes, which go beyond themes' intended characteristics in silos, increase industry practitioners' awareness of the underlying factors of BIM, IPD and LC integration.

Originality/value

This review article is the first of a kind to analyze the interaction of IPD, BIM and LC in the context of MMs in current AEC literature. This study concludes that BIM, IPD and LC share several joint cornerstones according to the existing MMs.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 7 June 2023

Khalil Idrissi Gartoumi, Mohamed Aboussaleh and Smail Zaki

This paper aims to explore a framework for implementing Lean Construction (LC) to provide corrective actions for quality defects, customer dissatisfaction and value creation…

Abstract

Purpose

This paper aims to explore a framework for implementing Lean Construction (LC) to provide corrective actions for quality defects, customer dissatisfaction and value creation during the construction of megaprojects.

Design/methodology/approach

This paper presents a case study involving the construction of the Mohamed VI Tower in Morocco. It is the tallest tower in Africa, with 55 floors and a total height of 250 m. This study of the quality of the work and the involvement of the LC was carried out using the Define–Measure–Analysis–Improve–Control approach from Lean six sigma. It describes the Critical to Quality and analyses the root causes of quality defects, customer dissatisfaction and variation in the quality process.

Findings

Firstly, the results of this study map the causal factors of lack of quality as established in the literature. Secondly, the LC tools have reduced non-value-added sources of quality waste and, consequently, improved critical quality indicators.

Research limitations/implications

This document focuses on one part of the tower’s construction and is limited to a project case in a country where LC is rarely used.

Originality/value

This study reinforces the literature reviews, surveys and the small number of case studies that have validated the potential of LC and further clarifies future directions for the practical emergence of this quality improvement approach, especially for large-scale projects.

Details

Journal of Financial Management of Property and Construction , vol. 29 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 14 August 2024

Alaa Allam, Emad Elbeltagi, Mohamed Naguib Abouelsaad and Mohamed E. El Madawy

Formwork design and construction for reinforced concrete buildings take significant time, effort and money. Construction procedures are time-consuming for designers and costly for…

Abstract

Purpose

Formwork design and construction for reinforced concrete buildings take significant time, effort and money. Construction procedures are time-consuming for designers and costly for the contractor. Poor engineering decisions have led to several workplace accidents in the construction industry. This paper aims to present an integrated building information modeling – genetic algorithm (BIM-GA) model to automate formwork design, 3D visualization and optimization.

Design/methodology/approach

Data are precisely extracted from a 3D structural model and used to optimize formwork design based on available formwork components and prices. Optimization models are made using GA approach. A library of 3D formwork components was modeled and stored using Revit. The optimized design solution thereafter would be visualized automatically in Revit to readily acquire formwork quantities schedules and shop drawings.

Findings

A case study illustrating the proposed approach demonstrated that using BIM will reduce formwork design, quantification and drawing time by more than 50% of the traditional approach with safer design and accurate results due to process automation and optimize cost for the given data.

Originality/value

This research introduces an innovative integrated BIM and GA model for the optimization and automation of slab formwork design, which has significantly benefited the construction industry. The utilization of GA in the optimization process allows for the attainment of an optimal formwork design, ultimately leading to a reduction in construction cost and time.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 26 May 2023

Sina Moradi and Piia Sormunen

The construction industry has considerably evolved in the recent two decades due to the emergence of sustainability, lean construction (LC) and building information modelling…

4259

Abstract

Purpose

The construction industry has considerably evolved in the recent two decades due to the emergence of sustainability, lean construction (LC) and building information modelling (BIM). Despite previous research efforts, there is still a gap concerning the multidimensional nature of their integration. Hence, this study aims to fill the mentioned knowledge gap through exploring and comparing the challenges, enablers, techniques as well as benefits of integrating LC with BIM and sustainability in building construction projects.

Design/methodology/approach

A systematic literature review was conducted to fulfill the purpose of this study.

Findings

The findings reveal and compare the challenges, enablers, techniques and benefits of integrating LC with BIM and sustainability in building construction projects. The results suggest that there are eight common challenges for integrating LC with BIM and sustainability, including high initial cost, lack of collaboration, lack of professionals and lack of compatible contractual framework. The discovered challenges, enablers, techniques and benefits seem to be mostly routed in people. The findings also suggest that the synergistic benefits of integrating LC with BIM and sustainability can overcome the common challenges (safety, reliability, productivity, collaboration and quality) in construction projects.

Originality/value

The findings contribute to the literature and practice concerning the integration of LC with BIM and sustainability by exploring, comparing and discussing the relevant challenges, enablers, techniques as well as benefits. Moreover, the findings reveal the significance of the development of people in construction industry, besides processes and technology, as people are always subject of activities in construction while processes and technology are always objects.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 129