Search results

1 – 10 of over 6000
Article
Publication date: 6 September 2023

Shreyanshu Parhi, Shashank Kumar, Kanchan Joshi, Milind Akarte, Rakesh D. Raut and Balkrishna Eknath Narkhede

The advent of Internet of Things, cloud computing and advanced computing has endowed smart manufacturing environments with resilience, reconfigurability and intelligence…

Abstract

Purpose

The advent of Internet of Things, cloud computing and advanced computing has endowed smart manufacturing environments with resilience, reconfigurability and intelligence, resulting in the emergence of novel capabilities. These capabilities have significantly reshaped the manufacturing ecosystem, enabling it to effectively navigate uncertainties. The purpose of this study is to assess the operational transformations resulting from the implementation of smart manufacturing, which distinguish it from conventional systems.

Design/methodology/approach

A list of qualitative and quantitative smart manufacturing performance metrics (SMPMs) are initially suggested and categorized into strategic, tactical and operational levels. The SMPMs resemble the capabilities of smart manufacturing systems to manage disruptions due to uncertainties. Then, industry and academia experts validate the SMPMs through the utilization of the Delphi method, enabling the ranking of the SMPMs.

Findings

The proposition of the SMPMs serves as a metric to assess the digital transformation capabilities of smart manufacturing systems. In addition, the ranking of the proposed SMPMs shows a degree of relevance of the measures in smart manufacturing deployment and managing the disruptions caused due to the COVID-19 pandemic

Research limitations/implications

The findings benefit managers, consultants, policymakers and researchers in making appropriate decisions for deploying and operationalizing smart manufacturing systems by focusing on critical SMPMs.

Originality/value

The research provides a metric to assess the operational transformations during the deployment of smart manufacturing systems. Also, it states the role of the metric in managing the potential disruptions that can alter the performance of the business due to the COVID-19 pandemic.

Details

Journal of Global Operations and Strategic Sourcing, vol. 17 no. 3
Type: Research Article
ISSN: 2398-5364

Keywords

Article
Publication date: 28 December 2023

Vikram Singh, Nirbhay Sharma and Somesh Kumar Sharma

Every company or manufacturing system is vulnerable to breakdowns. This research aims to analyze the role of Multi-Agent Technology (MAT) in minimizing breakdown probabilities in…

Abstract

Purpose

Every company or manufacturing system is vulnerable to breakdowns. This research aims to analyze the role of Multi-Agent Technology (MAT) in minimizing breakdown probabilities in Manufacturing Industries.

Design/methodology/approach

This study formulated a framework of six factors and twenty-eight variables (explored in the literature). A hybrid approach of Multi-Criteria Decision-Making Technique (MCDM) was employed in the framework to prioritize, rank and establish interrelationships between factors and variables grouped under them.

Findings

The research findings reveal that the “Manufacturing Process” is the most essential factor, while “Integration Manufacturing with Maintenance” is highly impactful on the other factors to eliminate the flaws that may cause system breakdown. The findings of this study also provide a ranking order for variables to increase the performance of factors that will assist manufacturers in reducing maintenance efforts and enhancing process efficiency.

Practical implications

The ranking order developed in this study may assist manufacturers in reducing maintenance efforts and enhancing process efficiency. From the manufacturer’s perspective, this research presented MAT as a key aspect in dealing with the complexity of manufacturing operations in manufacturing organizations. This research may assist industrial management with insights into how they can lower the probability of breakdown, which will decrease expenditures, boost productivity and enhance overall efficiency.

Originality/value

This study is an original contribution to advancing MAT’s theory and empirical applications in manufacturing organizations to decrease breakdown probability.

Article
Publication date: 17 January 2023

Gharib Hashem and Mohamed Aboelmaged

Rapid changes in the global environment and the effects of existing economic issues triggered by COVID-19 and the war in Ukraine have posed several challenges for manufacturing…

Abstract

Purpose

Rapid changes in the global environment and the effects of existing economic issues triggered by COVID-19 and the war in Ukraine have posed several challenges for manufacturing firms. A hybrid strategy integrating lean and agile (leagile) systems is viable for firms to enhance their capabilities in such dynamic contexts. This paper examines the critical drivers of leagile manufacturing system adoption in an emerging economy from the technological, organizational and environmental (TOE) perspective.

Design/methodology/approach

A cross-sectional survey is carried out to obtain data from 438 managers working in 219 manufacturing firms. Multiple regression analysis is applied to test the effect of technological, organizational and environmental drivers on the adoption of leagile systems.

Findings

The results show that organization capacity, environmental uncertainty and relative advantage demonstrate the most significant positive relationships with the leagile systems adoption wherein complexity and resistance to change appear to exhibit significant negative associations. Unexpectedly, firm size unveils no significant effect on the adoption of leagile systems.

Practical implications

To deal effectively with critical challenges triggered by ever-changing environment, firms have sought to adopt innovative systems for achieving products' availability in the markets at the right quality and price. A hybrid strategy integrating lean and agile (leagile) systems is viable to enhance a firm's capabilities in such dynamic contexts. The findings of our study help top management and policymakers identify and assess the critical drivers that may facilitate or hinder the successful adoption of leagile systems.

Originality/value

A major trend of studies in the field of manufacturing systems has focused on the critical success factors of adopting either lean or agile systems. Furthermore, research work concerning leagile as a hybrid system focuses primarily on the conceptual development rather than empirical grounds of leagile systems. Given the lack of empirical research in this field, this study offers an early attempt to predict leagile system adoption in an emerging economy. It also contributes to the manufacturing systems research by extending the extant knowledge about the role of firm-level drivers in leagile system adoption from the TOE perspective.

Details

Benchmarking: An International Journal, vol. 30 no. 10
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 27 November 2023

Velmurugan Kumaresan, S. Saravanasankar and Gianpaolo Di Bona

Through the use of the Markov Decision Model (MDM) approach, this study uncovers significant variations in the availability of machines in both faulty and ideal situations in…

Abstract

Purpose

Through the use of the Markov Decision Model (MDM) approach, this study uncovers significant variations in the availability of machines in both faulty and ideal situations in small and medium-sized enterprises (SMEs). The first-order differential equations are used to construct the mathematical equations from the transition-state diagrams of the separate subsystems in the critical part manufacturing plant.

Design/methodology/approach

To obtain the lowest investment cost, one of the non-traditional optimization strategies is employed in maintenance operations in SMEs in this research. It will use the particle swarm optimization (PSO) algorithm to optimize machine maintenance parameters and find the best solutions, thereby introducing the best decision-making process for optimal maintenance and service operations.

Findings

The major goal of this study is to identify critical subsystems in manufacturing plants and to use an optimal decision-making process to adopt the best maintenance management system in the industry. The optimal findings of this proposed method demonstrate that in problematic conditions, the availability of SME machines can be enhanced by up to 73.25%, while in an ideal situation, the system's availability can be increased by up to 76.17%.

Originality/value

The proposed new optimal decision-support system for this preventive maintenance management in SMEs is based on these findings, and it aims to achieve maximum productivity with the least amount of expenditure in maintenance and service through an optimal planning and scheduling process.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 2 July 2024

Jinzhi Lu, Yihui Gong, Guoxin Wang and Yan Yan

Model-based systems engineering (MBSE) is an important approach for the transforming process from “document-centered” to “model centered” systems engineering mode in equipment…

Abstract

Purpose

Model-based systems engineering (MBSE) is an important approach for the transforming process from “document-centered” to “model centered” systems engineering mode in equipment development, which can effectively shorten the equipment development cycle and improve product design quality. This paper aims to understand if MBSE enables to support manufacturing and equipment development.

Design/methodology/approach

The paper opted a bibliometric analysis of MBSE in domain of advanced manufacturing from different perspectives such as publication volume, research team, sources and keyword co-occurrence.

Findings

Firstly, the application of MBSE in advanced manufacturing can be roughly divided into three stages. And MBSE has been widely implemented globally and has gradually formed several noteworthy teams. Secondly, this article has identified some high-quality sources, with a large number of publications and citations, the most influential publications focus on the practice or guidance of digital twins and intelligent manufacturing. Thirdly, research can be divided into six categories, including systems engineering, digitalization, intelligent manufacturing, product design, model and architecture and MBSE applications.

Research limitations/implications

Because of the chosen research approach, the visualized network tends to lose certain information such as a few keywords may be inaccurately categorized.

Practical implications

This paper comprehensively study the research status of MBSE in advanced manufacturing and forecasts future research trends, emphasizing the combination of intelligent manufacturing and digitization.

Originality/value

This paper fulfills an identified need to understand the current application status and future development trends of MBSE.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 5 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 19 May 2023

Michail Katsigiannis, Minas Pantelidakis and Konstantinos Mykoniatis

With hybrid simulation techniques getting popular for systems improvement in multiple fields, this study aims to provide insight on the use of hybrid simulation to assess the…

Abstract

Purpose

With hybrid simulation techniques getting popular for systems improvement in multiple fields, this study aims to provide insight on the use of hybrid simulation to assess the effect of lean manufacturing (LM) techniques on manufacturing facilities and the transition of a mass production (MP) facility to incorporating LM techniques.

Design/methodology/approach

In this paper, the authors apply a hybrid simulation approach to improve an educational automotive assembly line and provide guidelines for implementing different LM techniques. Specifically, the authors describe the design, development, verification and validation of a hybrid discrete-event and agent-based simulation model of a LEGO® car assembly line to analyze, improve and assess the system’s performance. The simulation approach examines the base model (MP) and an alternative scenario (just-in-time [JIT] with Heijunka).

Findings

The hybrid simulation approach effectively models the facility. The alternative simulation scenario (implementing JIT and Heijunka LM techniques) improved all examined performance metrics. In more detail, the system’s lead time was reduced by 47.37%, the throughput increased by 5.99% and the work-in-progress for workstations decreased by up to 56.73%.

Originality/value

This novel hybrid simulation approach provides insight and can be potentially extrapolated to model other manufacturing facilities and evaluate transition scenarios from MP to LM.

Details

International Journal of Lean Six Sigma, vol. 15 no. 2
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 31 March 2023

Dharmendra Hariyani and Sanjeev Mishra

The purposes of this paper are (1) to identify and rank the various enablers for an integrated sustainable-green-lean-six sigma-agile manufacturing system (ISGLSAMS), and (2) to…

Abstract

Purpose

The purposes of this paper are (1) to identify and rank the various enablers for an integrated sustainable-green-lean-six sigma-agile manufacturing system (ISGLSAMS), and (2) to study their correlations and their impact on organizational performance.

Design/methodology/approach

Three tiers methodology is used to analyze the enablers for the successful adoption of ISGLSAMS. First, a total of 32 ISGLSAMS enablers are identified through a comprehensive literature review. Then, data are collected with a structured questionnaire from 108 Indian manufacturing industries. Then, an analytic approach is used to analyze (1) the relevance and significance of enablers and (2) their correlations (1) with each other, and (2) with the organizational performance outcomes, to strengthen the understanding of ISGLSAMS.

Findings

The findings suggest that top management commitment, sustainable reconfigurable manufacturing system, organization resources for 6 Rs, customers' and stakeholders' involvement, corporate social responsibility (CSR), customers and stakeholders-focused strategic alliances, dynamic manufacturing strategies, use of information and communication technology, concurrent engineering, standardized tasks for continuous improvement, virtual network of supply chain partners, real-time monitoring and control, training and education, employees' involvement and empowerment enablers are the higher level enablers for the adoption of ISGLSAMS. Findings also suggest that there is a scope for research in the incorporation of lot size reduction, Keiretsu-Kraljic supply chain relationship strategy, external collaborations with the stakeholders other than supply chain members, matrix flatter organization structure, employees' career development, justified employees' wages, government support for research fund and subsidies and vendor-managed inventory practices for ISGLSAMS. Top management commitment, sustainable reconfigurable manufacturing system, organization resources for 6 Rs, corporate social responsibility (CSR), dynamic manufacturing strategies, use of information and communication technology, concurrent engineering, virtual network of supply chain partners, real-time monitoring and control, training and education, employees' involvement and empowerment have a significant effect on (1) sustainable product design, (2) sustainable production system, (3) improvement in the sale, (4) improvement in market responsiveness, (5) improvement in the competitive position and (6) improvement in the global market image.

Practical implications

Through this study of ISGLSAMS enablers and their interdependence, and their impact on ISGLSAMS performance outcomes government, organizations, stakeholders, policymakers and supply chain partners may plan the policy, roadmap and strategies for the successful adoption of (1) ISGLSAMS in the organizational value chain, and (2) Industrial ecology and industrial symbiosis in India. The study also contributes to the industrial managers, and value chain partners a better understanding of ISGLSAMS.

Originality/value

This study is the first attempt to understand (1) the ISGLSAMS enablers and their correlations, and (2) the effect of ISGLSAMS enablers on ISGLSAMS performance outcomes to get the competitive and sustainability advantage. The study contributes to the practitioners, policymakers, organizations, government, researchers and academicians a better understanding of ISGLSAMS enablers and its performance outcomes.

Article
Publication date: 26 January 2023

Jaya Priyadarshini and Amit Kumar Gupta

A flexible manufacturing system (FMS) helps improve the system’s performance, thus increasing its overall competitiveness. FMS is an essential component of Industry 4.0 (I4.0)…

Abstract

Purpose

A flexible manufacturing system (FMS) helps improve the system’s performance, thus increasing its overall competitiveness. FMS is an essential component of Industry 4.0 (I4.0), which has revolutionized the way firms manufacture their products. This study aims to investigate the diverse focus of the research being published over the years and the direction of scholarly work in applying FMSs in business and management.

Design/methodology/approach

A total of 1,096 bibliometric data were extracted from the Scopus database from the years 2001 to 2021. A systematic review and bibliometric analysis were performed on the data and related articles for performance measurement and scientific mapping on the FMS themes.

Findings

Based on co-keyword, the study reveals four major themes in the FMS field: mathematical models and quantitative techniques, scheduling and optimization techniques, cellular manufacturing and decision-making in FMSs. Based on bibliometric coupling on 2018–2021 bibliometric data, four themes emerged for future research: scheduling problems in FMS, manufacturing cell formation problem, interplay of FMS with other latest technologies and I4.0 and FMS.

Originality/value

The originality lies in answering the following research questions: What are the most highlighting themes in FMS, and how have they evolved over the past 20 years (2001–2021)? What topics have been at the forefront of research in FMS in the past five years (2016–2021)? What are the promising avenues of research in FMS?

Details

Journal of Modelling in Management, vol. 19 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 31 August 2023

Melinda Laundon, Paula McDonald and Jacqueline Greentree

This paper explores how education and training systems can support a digitally-enabled workforce for the Australian manufacturing sector.

Abstract

Purpose

This paper explores how education and training systems can support a digitally-enabled workforce for the Australian manufacturing sector.

Design/methodology/approach

The study is based on interviews with 17 sector-level manufacturing stakeholders from industry, government and education/training organisations. Semi-structured interviews were conducted to gain an in-depth understanding of how education and training systems currently support a digitally-enabled manufacturing workforce as well as opportunities for alternative configurations or developments.

Findings

Analysis revealed three themes reflecting core dimensions of a supportive education and training system: partnerships, pedagogy and prospects. Cooperative, integrated and sustained partnerships are needed between vocational education and training (VET) institutions, universities, government, industry, high schools and private training providers. Pedagogy emphasises the vital importance of infusing curriculum with digital and technology skills and capabilities, alongside innovative and experiential delivery modes including simulated environments, online learning, on-the-job training, flexible delivery and micro-credentials. Prospects reflects the need for forward-looking assessment and planning to respond to industry trends and develop associated qualifications, skills and investments required to meet future industry needs.

Originality/value

With growing demand for digitally-enabled skills to support manufacturing, an industry which is acknowledged as critical for economic prosperity and national sovereignty, the findings contribute novel insights into current limitations and future opportunities to bridge the gap between skills shortages in the manufacturing industry, and education and training systems that deliver graduate readiness and a digitally-enabled workforce.

Details

Education + Training, vol. 65 no. 6/7
Type: Research Article
ISSN: 0040-0912

Keywords

Article
Publication date: 14 August 2023

Usman Tariq, Ranjit Joy, Sung-Heng Wu, Muhammad Arif Mahmood, Asad Waqar Malik and Frank Liou

This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive…

Abstract

Purpose

This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive manufacturing (SM) processes. The current shortcomings and outlook of the DF also have been highlighted. A DF is a state-of-the-art manufacturing facility that uses innovative technologies, including automation, artificial intelligence (AI), the Internet of Things, additive manufacturing (AM), SM, hybrid manufacturing (HM), sensors for real-time feedback and control, and a DT, to streamline and improve manufacturing operations.

Design/methodology/approach

This study presents a novel perspective on DF development using laser-based AM, SM, sensors and DTs. Recent developments in laser-based AM, SM, sensors and DTs have been compiled. This study has been developed using systematic reviews and meta-analyses (PRISMA) guidelines, discussing literature on the DTs for laser-based AM, particularly laser powder bed fusion and direct energy deposition, in-situ monitoring and control equipment, SM and HM. The principal goal of this study is to highlight the aspects of DF and its development using existing techniques.

Findings

A comprehensive literature review finds a substantial lack of complete techniques that incorporate cyber-physical systems, advanced data analytics, AI, standardized interoperability, human–machine cooperation and scalable adaptability. The suggested DF effectively fills this void by integrating cyber-physical system components, including DT, AM, SM and sensors into the manufacturing process. Using sophisticated data analytics and AI algorithms, the DF facilitates real-time data analysis, predictive maintenance, quality control and optimal resource allocation. In addition, the suggested DF ensures interoperability between diverse devices and systems by emphasizing standardized communication protocols and interfaces. The modular and adaptable architecture of the DF enables scalability and adaptation, allowing for rapid reaction to market conditions.

Originality/value

Based on the need of DF, this review presents a comprehensive approach to DF development using DTs, sensing devices, LAM and SM processes and provides current progress in this domain.

Access

Year

Last 12 months (6607)

Content type

Article (6607)
1 – 10 of over 6000