Search results

1 – 10 of 22
Open Access
Article
Publication date: 30 August 2023

Sumit Gupta, Deepika Joshi, Sandeep Jagtap, Hana Trollman, Yousef Haddad, Yagmur Atescan Yuksek, Konstantinos Salonitis, Rakesh Raut and Balkrishna Narkhede

The paper proposes a framework for the successful deployment of Industry 4.0 (I4.0) principles in the aerospace industry, based on identified success factors. The paper challenges…

Abstract

Purpose

The paper proposes a framework for the successful deployment of Industry 4.0 (I4.0) principles in the aerospace industry, based on identified success factors. The paper challenges the perception of I4.0 being aligned with de-skilling and personnel reduction and instead promotes a route to successful deployment centred on upskilling and retaining personnel for future role requirements.

Design/methodology/approach

The research methodology involved a literature review and industrial data collection via questionnaires to develop and validate the framework. The questionnaire was sent to a purposive sample of 50 respondents working in operations, and a response rate of 90% was achieved. Content analysis was used to identify patterns, themes, or biases, and the data were tabulated based on specific common attributes. The proposed framework consists of a series of gates and criteria that must be met before progressing to the next gate.

Findings

The proposed framework provides a feedback mechanism to review minimum standards for successful deployment, aligned with new developments in capability and technology, and ensures quality assessment at each gate. The paper highlights the potential benefits of I4.0 implementation in the aerospace industry, including reducing operational costs and improving competitiveness by eliminating variation in manufacturing processes. The identified success factors were used to define the framework, and the identified failure points were used to form mitigation actions or controls for inclusion in the framework.

Originality/value

The paper provides a framework for the successful deployment of I4.0 principles in the aerospace industry, based on identified success factors. The framework challenges the perception of I4.0 as being aligned with de-skilling and personnel reduction and instead promotes a route to successful deployment centred on upskilling and retaining personnel for future role requirements. The framework can be used as a guideline for organizations to deploy I4.0 principles successfully and improve competitiveness.

Details

International Journal of Industrial Engineering and Operations Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2690-6090

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 29 January 2021

Orlando Troisi, Anna Visvizi and Mara Grimaldi

The purpose of this paper is to explore the emergence of innovation in smart service systems to conceptualize how actor’s relationships through technology-enabled interactions can…

3007

Abstract

Purpose

The purpose of this paper is to explore the emergence of innovation in smart service systems to conceptualize how actor’s relationships through technology-enabled interactions can give birth to novel technologies, processes, strategies and value. The objectives of the study are: to detect the different enablers that activate innovation in smart service systems; and to explore how these can lead dynamically to the emergence of different innovation patterns.

Design/methodology/approach

The empirical research adopts an approach based on constructivist grounded theory, performed through observation and semi-structured interviews to investigate the development of innovation in the Italian CTNA (Italian acronym of National Cluster for Aerospace Technology).

Findings

The identification and re-elaboration of the novelties that emerged from the analysis of the Cluster allow the elaboration of a diagram that classifies five different shades of innovation, introduced through some related theoretical propositions: technological; process; business model and data-driven; social and eco-sustainable; and practice-based.

Originality/value

The paper embraces a synthesis view that detects the enabling structural and systems dimensions for innovation (the “what”) and the way in which these can be combined to create new technologies, resources, values and social rules (the “how” dimension). The classification of five different kinds of innovation can contribute to enrich extant research on value co-creation and innovation and can shed light on how given technologies and relational strategies can produce varied innovation outcomes according to the diverse stakeholders engaged.

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Open Access
Article
Publication date: 27 March 2023

Clinton Ohis Aigbavboa, Andrew Ebekozien and Nompumelelo Mkhize

Aerospace is a demanding technological and industrial sector. Several regulations and policies via innovative digital transformation have been integrated to impact production…

4057

Abstract

Purpose

Aerospace is a demanding technological and industrial sector. Several regulations and policies via innovative digital transformation have been integrated to impact production systems and supply chains, including safety measures. Studies demonstrated that the Fourth Industrial Revolution (4IR) technologies could enhance productivity growth and safety measures. The 4IR role in influencing airlines’ growth is yet to receive in-depth studies in South Africa. Thus, this study aims to investigate the role of 4IR technologies in influencing airlines’ growth in South Africa.

Design/methodology/approach

This research used a qualitative research method. Primary data were compiled via 56 face-to-face semi-structured interviews with major stakeholders. The study achieved saturation. A thematic method was used to analyse the collected data.

Findings

Findings reveal the nine major factors influencing South African airlines’ growth in the 4IR era. This includes investment in ergonomics applications and research, governance is driven by 4IR, collaboration and incorporation of 4IR concepts, partnership with drone technology and high precision and efficiency with 4IR. Others are reskilling and upskilling, investment in 4IR software, policies to promote 4IR usage in the industry and policies to reduce human interface.

Originality/value

Understanding the relative significance of 4IR technologies’ role in airlines’ growth can assist critical stakeholders in promoting innovative policies and regulations tailored towards digitalised aerospace. Thus, the study contributes to strategies to improve digital innovation, airline growth and safety as components of the air travel demands in South Africa.

Details

Journal of Facilities Management , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1472-5967

Keywords

Open Access
Article
Publication date: 3 May 2024

Salim Caliskan and Hakan Akyuz

This study aims to investigate the effect of speckle pattern on displacement measurements using different speckle diameters and coverage ratios.

Abstract

Purpose

This study aims to investigate the effect of speckle pattern on displacement measurements using different speckle diameters and coverage ratios.

Design/methodology/approach

In order to compare the coverage ratio and speckle diameter during the evaluation of the correlation of digital images (DIC) study, template speckle plates were produced on a computer numerical control (CNC) punch press with 600 punches per minute. After the speckle plates were manufactured, the speckled pattern was randomly painted on a plain white side through the manufactured template plates, and then tensile tests were performed under the same loading conditions for each sample to observe displacement variation via correlation parameters.

Findings

During the manufacturing of templates with thin plates, a punch diameter of less than 1.7 mm will cause tool failure; therefore, uniform speckle size can be assessed before operation. A higher coverage ratio resulted in more accurate and reliable results in displacement data. With smaller coverage, the facet size should be increased to achieve favorable results.

Research limitations/implications

If thick template plates are selected, speckle painting cannot be done properly; therefore, template thickness shall also be assessed before operation.

Practical implications

For randomly distributed DIC templates, increasing coverage beyond 50% does not make sense due to difficulties in the production process in the punch press.

Originality/value

Evaluating DIC results via templates manufactured in a punch press with different speckle diameters and coverage ratios is a new topic in literature.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 12 October 2023

Michael Rothgang and Bernhard Lageman

This study, a conceptual paper, aims an answer the question, how significant cluster ambidexterity is for the resilience of individual clusters.

Abstract

Purpose

This study, a conceptual paper, aims an answer the question, how significant cluster ambidexterity is for the resilience of individual clusters.

Design/methodology/approach

The authors draw up an abductive synopsis of empirical information and relevant theoretical sources. A case study is used to illustrate some of the findings.

Findings

The results of the analysis show that the ambidexterity of a cluster can contribute to its resilience when adverse external developments arise. Ambidexterity proves to be simultaneously a common strategy of key cluster actors and a mechanism for coping with critical situations and developments that can be activated by the cluster actors and may – eventually – lead to cluster resilience. While ambidexterity does not guarantee cluster survival, it can contribute significantly to their economic resilience under adverse conditions.

Research limitations/implications

The concept is developed on a limited empirical basis and would need to be tested and deepened by comparing a wide range of case studies from different clusters.

Practical implications

A better understanding of the importance of ambidexterity for the development of industrial clusters contributes to a better fine-tuning of cluster support policies.

Originality/value

Ambidexterity as a concept originating from business administration has so far only been rudimentarily tapped for empirical and theoretical cluster research. The paper identifies and develops a path how this could be accomplished to a greater extent in the future.

Details

Competitiveness Review: An International Business Journal , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1059-5422

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 28 July 2023

Karunamunige Sandun Madhuranga Karunamuni, Ekanayake Mudiyanselage Kapila Bandara Ekanayake, Subodha Dharmapriya and Asela Kumudu Kulatunga

The purpose of this study is to develop a novel general mathematical model to find the optimal product mix of commercial graphite products, which has a complex production process…

Abstract

Purpose

The purpose of this study is to develop a novel general mathematical model to find the optimal product mix of commercial graphite products, which has a complex production process with alternative sub-processes in the graphite mining production process.

Design/methodology/approach

The network optimization was adopted to model the complex graphite mining production process through the optimal allocation of raw graphite, byproducts, and saleable products with comparable sub-processes, which has different processing capacities and costs. The model was tested on a selected graphite manufacturing company, and the optimal graphite product mix was determined through the selection of the optimal production process. In addition, sensitivity and scenario analyses were carried out to accommodate uncertainties and to facilitate further managerial decisions.

Findings

The selected graphite mining company mines approximately 400 metric tons of raw graphite per month to produce ten types of graphite products. According to the optimum solution obtained, the company should produce only six graphite products to maximize its total profit. In addition, the study demonstrated how to reveal optimum managerial decisions based on optimum solutions.

Originality/value

This study has made a significant contribution to the graphite manufacturing industry by modeling the complex graphite mining production process with a network optimization technique that has yet to be addressed at this level of detail. The sensitivity and scenario analyses support for further managerial decisions.

Details

International Journal of Industrial Engineering and Operations Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2690-6090

Keywords

Open Access
Article
Publication date: 4 July 2023

Patrizia Di Tullio, Matteo La Torre, Michele Antonio Rea, James Guthrie and John Dumay

New Space activities offer benefits for human progress and life beyond the Earth. However, there is a risk that the New Space Economy may develop according to an anthropocentric…

1535

Abstract

Purpose

New Space activities offer benefits for human progress and life beyond the Earth. However, there is a risk that the New Space Economy may develop according to an anthropocentric mindset favouring human progress and survival at the expense of all other species and the environment. This mindset raises concerns over the social and environmental impacts of space activities and the accountability of space actors. This research article explores the accountability of space actors by presenting a pluralistic accountability framework to understand, inspire and change accountability in the New Space Economy. This study also identifies future research opportunities.

Design/methodology/approach

This paper is a reflective and normative essay. The arguments are developed using contemporary multidisciplinary academic literature, publicly available evidence and examples. Further, the authors use Dillard and Vinnari's accountability framework to examine a pluralistic accountability system for space businesses.

Findings

The New Space Economy requires public and private entities to embrace hybrid and pluralistic accountability for their social and environmental impacts. A new way of seeing the relationship between human life, the Earth and celestial space is needed. Accounting language is used to mirror and mobilise broader forms of responsibility in those involved in space.

Originality/value

This paper responds to the AAAJ's special issue call for examining how accountability can be ensured in the New Space Age. The space activities businesses conduct, and the anthropocentric view inspiring their race toward space is concerning. Hence, the authors advocate the need for rethinking accountability between humans and nature. The paper contributes to fostering the debate on social and environmental accounting and the accountability of space actors in the New Space Economy. To this end, the authors use a pluralistic accountability framework to help understand how the New Space Economy can face the risks emanating from its anthropocentric mindset.

Details

Accounting, Auditing & Accountability Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0951-3574

Keywords

Access

Only Open Access

Year

Content type

Earlycite article (22)
1 – 10 of 22