Search results

1 – 10 of 164
Article
Publication date: 12 May 2021

Abdul-Majid Wazwaz

This study aims to develop two integrable shallow water wave equations, of higher-dimensions, and with constant and time-dependent coefficients, respectively. The author derives…

Abstract

Purpose

This study aims to develop two integrable shallow water wave equations, of higher-dimensions, and with constant and time-dependent coefficients, respectively. The author derives multiple soliton solutions and a class of lump solutions which are rationally localized in all directions in space.

Design/methodology/approach

The author uses the simplified Hirota’s method and lump technique for determining multiple soliton solutions and lump solutions as well. The author shows that the developed (2+1)- and (3+1)-dimensional models are completely integrable in in the Painlené sense.

Findings

The paper reports new Painlevé-integrable extended equations which belong to the shallow water wave medium.

Research limitations/implications

The author addresses the integrability features of this model via using the Painlevé analysis. The author reports multiple soliton solutions for this equation by using the simplified Hirota’s method.

Practical implications

The obtained lump solutions include free parameters; some parameters are related to the translation invariance and the other parameters satisfy a non-zero determinant condition.

Social implications

The work presents useful algorithms for constructing new integrable equations and for the determination of lump solutions.

Originality/value

The paper presents an original work with newly developed integrable equations and shows useful findings of solitary waves and lump solutions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2013

Ahmet Bekir and Esin Aksoy

The purpose of this paper is to apply the exp‐function method to construct exact solutions of nonlinear wave equations. The proposed technique is tested on the (2+1) and (3+1

Abstract

Purpose

The purpose of this paper is to apply the exp‐function method to construct exact solutions of nonlinear wave equations. The proposed technique is tested on the (2+1) and (3+1) dimensional extended shallow water wave equations. These equations play a very important role in mathematical physics and engineering sciences.

Design/methodology/approach

In this paper, the authors apply the exp‐function method to construct exact solutions of nonlinear wave equations.

Findings

In total, four forms of the extended shallow water wave equation have been studied, from the point of view of its exact solutions using computational method. Exp‐function method was employed to achieve the goal set for this work. The applied method will be used in further works to establish more entirely new solutions for other kinds of nonlinear wave equations. Finally, it is worthwhile to mention that the proposed method is straightforward, concise, and it is a promising and powerful new method for other nonlinear wave equations in mathematical physics.

Originality/value

The algorithm suggested in the paper is quite efficient and is practically well suited for use in these problems. The method is straightforward and concise, and its applications are promising.

Article
Publication date: 4 September 2017

Perumandla Karunakar and Snehashish Chakraverty

This paper aims to solve linear and non-linear shallow water wave equations using homotopy perturbation method (HPM). HPM is a straightforward method to handle linear and…

Abstract

Purpose

This paper aims to solve linear and non-linear shallow water wave equations using homotopy perturbation method (HPM). HPM is a straightforward method to handle linear and non-linear differential equations. As such here, one-dimensional shallow water wave equations have been considered to solve those by HPM. Interesting results are reported when the solutions of linear and non-linear equations are compared.

Design/methodology/approach

HPM was used in this study.

Findings

Solution of one-dimensional linear and non-linear shallow water wave equations and comparison of linear and non-linear coupled shallow water waves from the results obtained using present method.

Originality/value

Coupled non-linear shallow water wave equations are solved.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 June 2018

Perumandla Karunakar and Snehashish Chakraverty

This paper aims to present solutions of uncertain linear and non-linear shallow water wave equations. The uncertainty has been taken as interval and one-dimensional interval…

210

Abstract

Purpose

This paper aims to present solutions of uncertain linear and non-linear shallow water wave equations. The uncertainty has been taken as interval and one-dimensional interval shallow water wave equations have been solved by homotopy perturbation method (HPM). In this study, basin depth and initial conditions have been taken as interval and the single parametric concept has been used to handle the interval uncertainty.

Design/methodology/approach

HPM has been used to solve interval shallow water wave equation with the help of single parametric concept.

Findings

Previously, few authors found solution of shallow water wave equations with crisp basin depth and initial conditions. But, in actual sense, the basin depth, as well as initial conditions, may not be found in crisp form. As such, here these are considered as uncertain in term of intervals. Hence, interval linear and non-linear shallow water wave equations are solved in this study using single parametric concept-based HPM.

Originality/value

As mentioned above, uncertainty is must in the above-titled problems due to the various parametrics involved in the governing differential equations. These uncertain parametric values may be considered as interval. To the best of the authors’ knowledge, no work has been reported on the solution of uncertain shallow water wave equations. But when the interval uncertainty is involved in the above differential equation, then direct methods are not available. Accordingly, single parametric concept-based HPM has been applied in this study to handle the said problems.

Details

Engineering Computations, vol. 35 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 October 2018

Perumandla Karunakar and Snehashish Chakraverty

This paper aims to deal with the application of variational iteration method and homotopy perturbation method (HPM) for solving one dimensional shallow water equations with crisp…

Abstract

Purpose

This paper aims to deal with the application of variational iteration method and homotopy perturbation method (HPM) for solving one dimensional shallow water equations with crisp and fuzzy uncertain initial conditions.

Design/methodology/approach

Firstly, the study solved shallow water equations using variational iteration method and HPM with constant basin depth and crisp initial conditions. Further, the study considered uncertain initial conditions in terms of fuzzy numbers, which leads the governing equations to fuzzy shallow water equations. Then using cut and parametric concepts the study converts fuzzy shallow water equations to crisp form. Then, HPM has been used to solve the fuzzy shallow water equations.

Findings

Results obtained by both methods HPM and variational iteration method are compared graphically in crisp case. Solution of fuzzy shallow water equations by HPM are presented in the form triangular fuzzy number plots.

Originality/value

Shallow water equations with crisp and fuzzy initial conditions have been solved.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2023

Na Liu

This paper aims to study the breather, lump-kink and interaction solutions of a (3 + 1)-dimensional generalized shallow water waves (GSWW) equation, which describes water waves

58

Abstract

Purpose

This paper aims to study the breather, lump-kink and interaction solutions of a (3 + 1)-dimensional generalized shallow water waves (GSWW) equation, which describes water waves propagating in the ocean or is used for simulating weather.

Design/methodology/approach

Hirota bilinear form and the direct method are used to construct breather and lump-kink solutions of the GSWW equation. The “rational-cosh-cos-type” test function is applied to obtain three kinds of interaction solutions.

Findings

The fusion and fission of the interaction solutions between a lump wave and a 1-kink soliton of the GSWW equation are studied. The dynamics of three kinds of interaction solutions between lump, kink and periodic waves are discussed graphically.

Originality/value

This paper studies the breather, lump-kink and interaction solutions of the GSWW equation by using various approaches and provides some phenomena that have not been studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2022

Suheil Khuri

The purpose of this study is to produce families of exact soliton solutions (2+1)-dimensional Korteweg-de Vries (KdV) equation, that describes shallow water waves, using an…

Abstract

Purpose

The purpose of this study is to produce families of exact soliton solutions (2+1)-dimensional Korteweg-de Vries (KdV) equation, that describes shallow water waves, using an ansätze approach.

Design/methodology/approach

This article aims to introduce a recently developed ansätze for creating soliton and travelling wave solutions to nonlinear nonintegrable partial differential equations, especially those with physical significance.

Findings

A recently developed ansätze solution was used to successfully construct soliton solutions to the (2 + 1)-dimensional KdV equation. This straightforward method is an alternative to the Painleve test analysis, yielding similar results. The strategy demonstrated the existence of a single soliton solution, also known as a localized wave or bright soliton, as well as singular solutions or kink solitons.

Originality/value

The ansätze solution used to construct soliton solutions to the (2 + 1)-dimensional KdV equation is novel. New soliton solutions were also obtained.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 April 2020

J.I. Ramos and Carmen María García López

The purpose of this paper is to determine both analytically and numerically the solution to a new one-dimensional equation for the propagation of small-amplitude waves in shallow

Abstract

Purpose

The purpose of this paper is to determine both analytically and numerically the solution to a new one-dimensional equation for the propagation of small-amplitude waves in shallow waters that accounts for linear and nonlinear drift, diffusive attenuation, viscosity and dispersion, its dependence on the initial conditions, and its linear stability.

Design/methodology/approach

An implicit, finite difference method valid for both parabolic and second-order hyperbolic equations has been used to solve the equation in a truncated domain for five different initial conditions, a nil initial first-order time derivative and relaxation times linearly proportional to the viscosity coefficient.

Findings

A fast transition that depends on the coefficient of the linear drift, the diffusive attenuation and the power of the nonlinear drift are found for initial conditions corresponding to the exact solution of the generalized regularized long-wave equation. For initial Gaussian, rectangular and triangular conditions, the wave’s amplitude and speed increase as both the amplitude and the width of these conditions increase and decrease, respectively; wide initial conditions evolve into a narrow leading traveling wave of the pulse type and a train of slower oscillatory secondary ones. For the same initial mass and amplitude, rectangular initial conditions result in larger amplitude and velocity waves of the pulse type than Gaussian and triangular ones. The wave’s kinetic, potential and stretching energies undergo large changes in an initial layer whose thickness is on the order of the diffusive attenuation coefficient.

Originality/value

A new, one-dimensional equation for the propagation of small-amplitude waves in shallow waters is proposed and studied analytically and numerically. The equation may also be used to study the displacement of porous media subject to seismic effects, the dispersion of sound in tunnels, the attenuation of sound because of viscosity and/or heat and mass diffusion, the dynamics of second-order, viscoelastic fluids, etc., by appropriate choices of the parameters that appear in it.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 June 2023

Ismail Onder, Melih Cinar, A. Secer and Mustafa Bayram

The soliton solutions are obtained by using extended rational sin/cos and sinh-cosh method. The methods are powerful and have ease of use. Applying wave transformation to the…

Abstract

Purpose

The soliton solutions are obtained by using extended rational sin/cos and sinh-cosh method. The methods are powerful and have ease of use. Applying wave transformation to the nonlinear partial differential equations (NLPDEs) and the considered equation turns into a nonlinear differential equation (NODE). According to the methods, the solution sets of the NODE are supposed to the form of the rational terms as sinh/cosh and sin/cos and the trial solutions are substituted into the NODE. Collecting the same power of the trigonometric functions, a set of algebraic equations is derived.

Design/methodology/approach

The main purpose of this paper is to obtain soliton solutions of the modified equal width (MEW) equation. MEW is a form of regularized-long-wave (RLW) equation that represents one-dimensional wave propagation in nonlinear media with dispersion processes. This is also used to simulate the undular bore in a long shallow water canal.

Findings

Thus, the solution of the main PDE is reduced to the solution of a set of algebraic equations. In this paper, the kink, singular and singular periodic solitons have been successfully obtained.

Originality/value

Illustrative plots of the solutions have been presented for physical interpretation of the obtained solutions. The methods are powerful and might be used to solve a broad class of differential equations in real-life problems.

Details

Engineering Computations, vol. 40 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 August 2023

Kang-Jia Wang

The purpose of this paper is to study the new (3 + 1)-dimensional integrable fourth-order nonlinear equation which is used to model the shallow water waves.

Abstract

Purpose

The purpose of this paper is to study the new (3 + 1)-dimensional integrable fourth-order nonlinear equation which is used to model the shallow water waves.

Design/methodology/approach

By means of the Cole–Hopf transform, the bilinear form of the studied equation is extracted. Then the ansatz function method combined with the symbolic computation is implemented to construct the breather, multiwave and the interaction wave solutions. In addition, the subequation method tis also used to search for the diverse travelling wave solutions.

Findings

The breather, multiwave and the interaction wave solutions and other wave solutions like the singular periodic wave structure and dark wave structure are obtained. To the author’s knowledge, the solutions obtained are all new and have never been reported before.

Originality/value

The solutions obtained in this work have never appeared in other literature and can be regarded as an extension of the solutions for the new (3 + 1)-dimensional integrable fourth-order nonlinear equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 164