Search results

1 – 10 of 24
Open Access
Article
Publication date: 29 August 2023

Qingfeng Xu, Hèrm Hofmeyer and Johan Maljaars

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations…

Abstract

Purpose

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations do not include detailed models of the connections, whereas these connections may impact the overall behaviour of the structure. Therefore, this paper proposes a two-scale method to include screw connections.

Design/methodology/approach

The two-scale method consists of (a) a global-scale model that models the overall structural system and (b) a small-scale model to describe a screw connection. Components in the global-scale model are connected by a spring element instead of a modelled screw, and the stiffness of this spring element is predicted by the small-scale model, updated at each load step. For computational efficiency, the small-scale model uses a proprietary technique to model the behaviour of the threads, verified by simulations that model the complete thread geometry, and validated by existing pull-out experiments. For four screw failure modes, load-deformation behaviour and failure predictions of the two-scale method are verified by a detailed system model. Additionally, the two-scale method is validated for a combined load case by existing experiments, and demonstrated for different temperatures. Finally, the two-scale method is illustrated as part of a two-way coupled fire-structure simulation.

Findings

It was shown that proprietary ”threaded connection interaction” can predict thread relevant failure modes, i.e. thread failure, shank tension failure, and pull-out. For bearing, shear, tension, and pull-out failure, load-deformation behaviour and failure predictions of the two-scale method correspond with the detailed system model and Eurocode predictions. Related to combined load cases, for a variety of experiments a good correlation has been found between experimental and simulation results, however, pull-out simulations were shown to be inconsistent.

Research limitations/implications

More research is needed before the two-scale method can be used under all conditions. This relates to the failure criteria for pull-out, combined load cases, and temperature loads.

Originality/value

The two-scale method bridges the existing very detailed small-scale screw models with present global-scale structural models, that in the best case only use springs. It shows to be insightful, for it contains a functional separation of scales, revealing their relationships, and it is computationally efficient as it allows for distributed computing. Furthermore, local small-scale non-convergence (e.g. a screw failing) can be handled without convergence problems in the global-scale structural model.

Details

Journal of Structural Fire Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 18 June 2024

Shizheng Sun, Ke Pang, Chao Liao and Jingtong Yu

The use of a force sensor to estimate the external force of manipulator not only needs to deal with the signal noise of the sensor itself but also needs to solve the coupling…

Abstract

Purpose

The use of a force sensor to estimate the external force of manipulator not only needs to deal with the signal noise of the sensor itself but also needs to solve the coupling interference of the sensor itself, especially the axial force. The purpose of this paper is to develop a three-dimensional fiber Bragg grating (FBG) wrist force sensor, which has a simple structure and reduces the coupling influence between several axes.

Design/methodology/approach

A particular separation elastic structure with four FBGs is devised for the three-axial force sensor. One FBG is suspended on the profile of central cylinder and the other three FBGs are pasted on the elastic beam surface of the over and under measuring bodies, respectively. Finite element analysis (FEA) simulation has been implemented to the strain distribution characteristics, the output characteristics of each direction and the coupling effects of the structure. Furthermore, theoretical derivation and experimental results are used to compare, which have a good consistency.

Findings

The experiment results show that the maximum repeatability error of the sensor is 6.75%, the maximum nonlinear error is 5.36%, the maximum coupling interference is 4.73% and the minimum sensitivity is 1.58 pm/N.

Originality/value

A three-dimensional force sensor based on FBG adopts a particular separation elastic structure. The sensor can reduce the coupling influence between several axes, especially the coupling interference in the z-direction is 0.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 April 2024

Xinmin Zhang, Jiqing Luo, Zhenhua Dong and Linsong Jiang

The long-span continuous rigid-frame bridges are commonly constructed by the section-by-section symmetrical balance suspension casting method. The deflection of these bridges is…

Abstract

Purpose

The long-span continuous rigid-frame bridges are commonly constructed by the section-by-section symmetrical balance suspension casting method. The deflection of these bridges is increasing over time. Wet joints are a typical construction feature of continuous rigid-frame bridges and will affect their integrity. To investigate the sensitivity of shear surface quality on the mechanical properties of long-span prestressed continuous rigid-frame bridges, a large serviced bridge is selected for analysis.

Design/methodology/approach

Its shear surface is examined and classified using the damage measuring method, and four levels are determined statistically based on the core sample integrity, cracking length and cracking depth. Based on the shear-friction theory of the shear surface, a 3D solid element-based finite element model of the selected bridge is established, taking into account factors such as damage location, damage number and damage of the shear surface. The simulated results on the stress distribution of the local segment, the shear surface opening and the beam deflection are extracted and analyzed.

Findings

The findings indicate that the main factors affecting the ultimate shear stress and shear strength of the shear surface are size, shear reinforcements, normal stress and friction performance of the shear surface. The connection strength of a single or a few shear surfaces decreases but with little effect on the local stress. Cracking and opening mainly occur at the 1/4 span. Compared with the rigid “Tie” connection, the mid-span deflection of the main span increases by 25.03% and the relative deflection of the section near the shear surface increases by 99.89%. However, when there are penetrating cracks and openings in the shear surface at the 1/2 span, compared with the 1/4 span position, the mid-span deflection of the main span and the relative deflection of the cross-section increase by 4.50%. The deflection of the main span increases with the failure of the shear surface.

Originality/value

These conclusions can guide the analysis of deflection development in long-span prestressed continuous rigid-frame bridges.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 15 February 2024

Jari Huikku, Elaine Harris, Moataz Elmassri and Deryl Northcott

This study aims to explore how managers exercise agency in strategic investment decisions (SIDs) by drawing on their knowledgeability of the strategic context. Specifically, the…

Abstract

Purpose

This study aims to explore how managers exercise agency in strategic investment decisions (SIDs) by drawing on their knowledgeability of the strategic context. Specifically, the authors address the role of position–practice relations and irresistible causal forces in this conduct.

Design/methodology/approach

The authors examine SID-making (SIDM) practices in four case organisations operating in highly competitive markets, conducting interviews with managers at various levels and analysing company documents. Drawing on strong structuration theory, the authors show how managerial decision makers draw upon their knowledge of organisational context when exercising agency in SIDs.

Findings

The authors provide insights into how SIDM behaviour, specifically agents’ conduct, is shaped by a combination of position–practice relations and the agents’ comprehension of their organisation’s context.

Research limitations/implications

The authors extend the SIDM literature by surfacing the issue of how actors’ conjuncturally-specific knowledge of external structures shapes the general dispositions they draw on in exercising agency in practice.

Originality/value

The authors extend the SIDM literature by surfacing the issue of how actors’ conjuncturally-specific knowledge of external structures shapes the general dispositions they draw on in exercising agency in practice. Particularly, the authors contribute to this literature by identifying irresistible causal forces and illuminating why actors might not resist in SIDM processes, despite having the potential to do so.

Details

Journal of Accounting & Organizational Change, vol. 20 no. 6
Type: Research Article
ISSN: 1832-5912

Keywords

Abstract

Details

New Approaches to Flexible Working
Type: Book
ISBN: 978-1-83549-520-9

Abstract

Details

Understanding Products as Services: How the Internet and AI are Transforming Product Companies
Type: Book
ISBN: 978-1-83797-824-3

Abstract

Details

Understanding Products as Services: How the Internet and AI are Transforming Product Companies
Type: Book
ISBN: 978-1-83797-824-3

Article
Publication date: 1 June 2023

Satish Kumar, Arun Gupta, Anish Kumar, Pankaj Chandna and Gian Bhushan

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially…

Abstract

Purpose

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially affects the accuracy. The workpiece temperature (WT), as well as the responses like material removal rate (MRR) and surface roughness (SR) for input parameters like cutting speed (CS), feed rate (F), depth-of-cut (DOC), step over (SO) and tool diameter (TD), becomes critical for sustaining the accuracy of the thin walls.

Design/methodology/approach

Response surface methodology was used to make 46 tests. To convert the multi-character problem into a single-character problem, the weightage was assessed using the entropy approach and the grey relational coefficient (GRC) was determined. To investigate the connection among input parameters and single-objective (GRC), a fuzzy mathematical modelling technique was used. The optimal performance of process parameters was estimated by grey relational entropy grade (GREG)-fuzzy and genetic algorithm (GA) optimization.

Findings

SR was found to be a significant process parameter, with CS, feed and DOC, respectively. Similarly, F, DOC and TD were found to be significant process parameters with MRR, respectively, and F, DOC, SO and TD were found to be significant process parameters with WT, respectively. GREG-fuzzy-GA found more suitable for minimizing the WT with the constraint s of SR and MRR and provide maximum desirability of 0.665. The projected and experimental values have a good agreement, with a standard error of 5.85%, and so the responses predicted by the suggested method are better optimized.

Originality/value

The GREG-fuzzy-GA is a new hybrid technique for analysing Inconel625 behaviour during machining in a 2.5D milling process.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Abstract

Details

Transformative Democracy in Educational Leadership and Policy
Type: Book
ISBN: 978-1-83753-545-3

Abstract

Details

Transformative Democracy in Educational Leadership and Policy
Type: Book
ISBN: 978-1-83753-545-3

1 – 10 of 24