Search results

1 – 10 of 44
Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 April 2024

Xiangkai Zhang, Renxin Wang, Wenping Cao, Guochang Liu, Haoyu Tan, Haoxuan Li, Jiaxing Wu, Guojun Zhang and Wendong Zhang

Human-induced marine environmental noise, such as commercial shipping and seismic exploration, is concentrated in the low-frequency range. Meanwhile, low-frequency sound signals…

Abstract

Purpose

Human-induced marine environmental noise, such as commercial shipping and seismic exploration, is concentrated in the low-frequency range. Meanwhile, low-frequency sound signals can achieve long-distance propagation in water. To meet the requirements of long-distance underwater detection and communication, this paper aims to propose an micro-electro-mechanical system (MEMS) flexible conformal hydrophone for low-frequency underwater acoustic signals. The substrate of the proposed hydrophone is polyimide, with silicon as the piezoresistive unit.

Design/methodology/approach

This paper proposes a MEMS heterojunction integration process for preparing flexible conformal hydrophones. In addition, sensors prepared based on this process are non-contact flexible sensors that can detect weak signals or small deformations.

Findings

The experimental results indicate that making devices with this process cannot only achieve heterogeneous integration of silicon film, metal wire and polyimide, but also allow for customized positions of the silicon film as needed. The success rate of silicon film transfer printing is over 95%. When a stress of 1 Pa is applied on the x-axis or y-axis, the maximum stress on Si as a pie-zoresistive material is above, and the average stress on the Si film is around.

Originality/value

The flexible conformal vector hydrophone prepared by heterogeneous integration technology provides ideas for underwater acoustic communication and signal acquisition of biomimetic flexible robotic fish.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 May 2024

Fay Rhianna Claybrook, Darren John Southee and Mazher Mohammed

Cushioning is a useful material property applicable for a range of applications from medical devices to personal protective equipment. The current ability to apply cushioning in a…

Abstract

Purpose

Cushioning is a useful material property applicable for a range of applications from medical devices to personal protective equipment. The current ability to apply cushioning in a product context is limited by the appropriateness of available materials, with polyurethane foams being the current gold standard material. The purpose of this study is to investigate additively manufactured flexible printing of scaffold structures as an alternative.

Design/methodology/approach

In this study, this study investigates triply periodic minimal surface (TPMS) structures, including Gyroid, Diamond and Schwarz P formed in thermoplastic polyurethane (TPU), as a possible alternative. Each TPMS structure was fabricated using material extrusion additive manufacturing and evaluated to ASTM mechanical testing standard for polymers. This study focuses attention to TPMS structures fabricated for a fixed unit cell size of 10 mm and examine the compressive properties for changes in the scaffold porosity for samples fabricated in TPU with a shore hardness of 63A and 90A.

Findings

It was discovered that for increased porosity there was a measured reduction in the load required to deform the scaffold. Additionally, a complex relationship between the shore hardness and the stiffness of a structure. It was highlighted that through the adjustment of porosity, the compressive strength required to deform the scaffolds to a point of densification could be controlled and predicted with high repeatability.

Originality/value

The results indicate the ability to tailor the scaffold design parameters using both 63A and 90A TPU material, to mimic the loading properties of common polyurethane foams. The use of these structures indicates a next generation of tailored cushioning using additive manufacturing techniques by tailoring both geometry and porosity to loading and compressive strengths.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 April 2024

Boxiang Xiao, Zhengdong Liu, Jia Shi and Yuanxia Wang

Accurate and automatic clothing pattern making is very important in personalized clothing customization and virtual fitting room applications. Clothing pattern generating as well…

Abstract

Purpose

Accurate and automatic clothing pattern making is very important in personalized clothing customization and virtual fitting room applications. Clothing pattern generating as well as virtual clothing simulation is an attractive research issue both in clothing industry and computer graphics.

Design/methodology/approach

Physics-based method is an effective way to model dynamic process and generate realistic clothing animation. Due to conceptual simplicity and computational speed, mass-spring model is frequently used to simulate deformable and soft objects follow the natural physical rules. We present a physics-based clothing pattern generating framework by using scanned human body model. After giving a scanned human body model, first, we extract feature points, planes and curves on the 3D model by geometric analysis, and then, we construct a remeshed surface which has been formatted to connected quad meshes. Second, for each clothing piece in 3D, we construct a mass-spring model with same topological structures, and conduct a typical time integration algorithm to the mass-spring model. Finally, we get the convergent clothing pieces in 2D of all clothing parts, and we reconnected parts which are adjacent on 3D model to generate the basic clothing pattern.

Findings

The results show that the presented method is a feasible way for clothing pattern generating by use of scanned human body model.

Originality/value

The main contribution of this work is twofold: one is the geometric algorithm to scanned human body model, which is specially conducted for clothing pattern design to extract feature points, planes and curves. This is the crucial base for suit clothing pattern generating. Another is the physics-based pattern generating algorithm which flattens the 3D shape to 2D shape of cloth pattern pieces.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 March 2024

Muhammed Turan Aslan, Bahattin Kanber, Hasan Demirtas and Bilal Sungur

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Abstract

Purpose

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Design/methodology/approach

An experimental setup was designed, experiments were conducted and the obtained results were compared with the finite element results. The deformations were measured according to various flow rates of electrolyte. In finite element calculations, the pressure distribution created by the electrolyte on the blade surface was obtained in the ANSYS® (A finite element analysis software) Fluent software and transferred to the static structural where the deformation analysis was carried out. Three different parameters were examined, namely blade thickness, blade material and electrolyte pressure on blade disk caused by mass flow rate. The deformation results were compared with the gap distances between cathode and anode.

Findings

Large deformations were obtained at the free end of the blade and the most curved part of it. The appropriate pressure values for the electrolyte to be used in the production of blisk blades were proposed numerically. It has been determined that high pressure applications are not suitable for gap distance lower than 0.5 mm.

Originality/value

When the literature is examined, it is required that the high speed flow of the electrolyte is desired in order to remove the parts that are separated from the anode from the machining area during electrochemical machining. However, the electrolyte flowing at high speeds causes high pressure in the blisk blades, excessive deformation and vibration of the machined part, and as a result, contact of the anode with the cathode. This study provides important findings for smooth electro chemical machining at high electrolyte flows.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 March 2024

Taotao Jin, Xiuhui Cui, Chuanyue Qi and Xinyu Yang

This paper aims to develop a specific type of mobile nonrigid support friction stir welding (FSW) robot, which can adapt to aluminum alloy trucks for rapid online repair.

39

Abstract

Purpose

This paper aims to develop a specific type of mobile nonrigid support friction stir welding (FSW) robot, which can adapt to aluminum alloy trucks for rapid online repair.

Design/methodology/approach

The friction stir welding robot is designed to complete online repair according to the surface damage of large aluminum alloy trucks. A rotatable telescopic arm unit and a structure for a cutting board in the shape of a petal that was optimized by finite element analysis are designed to give enough top forging force for welding to address the issues of inadequate support and significant deformation in the repair process.

Findings

The experimental results indicate that the welding robot is capable of performing online surface repairs for large aluminum alloy trucks without rigid support on the backside, and the welding joint exhibits satisfactory performance.

Practical implications

Compared with other heavy-duty robotic arms and gantry-type friction stir welding robots, this robot can achieve online welding without disassembling the vehicle body, and it requires less axial force. This lays the foundation for the future promotion of lightweight equipment.

Originality/value

The designed friction stir welding robot is capable of performing online repairs without dismantling the aluminum alloy truck body, even in situations where sufficient upset force is unavailable. It ensures welding quality and exhibits high efficiency. This approach is considered novel in the field of lightweight online welding repairs, both domestically and internationally.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 May 2024

Abdelkader Benaouali and Abdelwahid Boutemedjet

This paper aims to propose a structural sizing approach of an unmanned aerial vehicle (UAV) wing that takes into account the aeroelasticity effects through a fluid–structure…

Abstract

Purpose

This paper aims to propose a structural sizing approach of an unmanned aerial vehicle (UAV) wing that takes into account the aeroelasticity effects through a fluid–structure interaction analysis.

Design/methodology/approach

The sizing approach proposed in this study is an iterative process, each iteration of which consists of two sub-loops, a multidisciplinary analysis (MDA) loop followed by a structural optimization loop. The MDA loop seeks the aeroelastic equilibrium between aerodynamic forces and structural displacements using a fixed-point iteration scheme. Once the equilibrium is reached, the converged pressure loads are used for the structural optimization, which aims to find the structural thicknesses that minimize the wing weight under failure criteria. The two sub-loops are run sequentially in an iterative process until the mass is converged. The analysis models are implemented in open-source software, namely, PANUKL for aerodynamics and MYSTRAN for structures, while the whole process is automated with Python and integrated in the open-source optimization framework OpenMDAO.

Findings

The approach was applied to the design of the Predator MQ-1 wing. The results of the MDAs show the convergence of the wing deformations to the flight shape after few iterations. At the end of the aeroelastic sizing loop, the result is a structurally sized wing with minimal weight considering the aeroelasticity effects.

Originality/value

The approach proposed takes into account the wing aero-structural coupling effects while sizing its structure instead of a fixed load distribution. In addition, the approach is fully based on open-source codes, which are freely available for public use and can be fully reproducible.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 May 2024

Mohammad Vahid Ehteshamfar, Amir Kiadarbandsari, Ali Ataee, Katayoun Ghozati and Mohammad Ali Bagherkhani

Stereolithography (SLA) additive manufacturing (AM) technique has enabled the production of inconspicuous and aesthetically pleasing orthodontics that are also hygienic. However…

Abstract

Purpose

Stereolithography (SLA) additive manufacturing (AM) technique has enabled the production of inconspicuous and aesthetically pleasing orthodontics that are also hygienic. However, the staircase effect poses a challenge to the application of invisible orthodontics in the dental industry. The purpose of this study is to implement chemical postprocessing technique by using isopropyl alcohol as a solvent to overcome this challenge.

Design/methodology/approach

Fifteen experiments were conducted using a D-optimal design to investigate the effect of different concentrations and postprocessing times on the surface roughness, material removal rate (MRR), hardness and cost of SLA dental parts required for creating a clear customized aligner, and a container was constructed for chemical treatment of these parts made from photocurable resin.

Findings

The study revealed that the chemical postprocessing technique can significantly improve the surface roughness of dental SLA parts, but improper selection of concentration and time can lead to poor surface roughness. The optimal surface roughness was achieved with a concentration of 90 and a time of 37.5. Moreover, the dental part with the lowest concentration and time (60% and 15 min, respectively) had the lowest MRR and the highest hardness. The part with the highest concentration and time required the greatest budget allocation. Finally, the results of the multiobjective optimization analysis aligned with the experimental data.

Originality/value

This paper sheds light on a previously underestimated aspect, which is the pivotal role of chemical postprocessing in mitigating the adverse impact of stair case effect. This nuanced perspective contributes to the broader discourse on AM methodologies, establishing a novel pathway for advancing the capabilities of SLA in dental application.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 May 2024

Job Maveke Wambua, Fredrick Madaraka Mwema, Stephen Akinlabi, Martin Birkett, Ben Xu, Wai Lok Woo, Mike Taverne, Ying-Lung Daniel Ho and Esther Akinlabi

The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also…

Abstract

Purpose

The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure.

Design/methodology/approach

A Taguchi L9 orthogonal array design of the experiment is adopted in which the input parameters are resolution (0.06, 0.15 and 0.30 mm), print speed (60, 70 and 80 mm/s) and bed temperature (55°C, 60°C, 65°C). The response parameters considered were printing time, material usage, compression yield strength, compression modulus and dimensional stability. Empirical observations during compression tests were used to evaluate the load–response mechanism of the structures.

Findings

The printing resolution is the most significant input parameter. Material length is not influenced by the printing speed and bed temperature. The compression stress–strain curve exhibits elastic, plateau and densification regions. All the samples exhibit negative Poisson’s ratio values within the elastic and plateau regions. At the beginning of densification, the Poisson’s ratios change to positive values. The metamaterial printed at a resolution of 0.3 mm, 80 mm/s and 60°C exhibits the best mechanical properties (yield strength and modulus of 2.02 and 58.87 MPa, respectively). The failure of the structure occurs through bending and torsion of the unit cells.

Practical implications

The optimisation study is significant for decision-making during the 3D printing and the empirical failure model shall complement the existing techniques for the mechanical analysis of the metamaterials.

Originality/value

To the best of the authors’ knowledge, for the first time, a new empirical model, based on the uniaxial load response and “static truss concept”, for failure mechanisms of the unit cell is presented.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 44