Search results

1 – 10 of 286
Open Access
Article
Publication date: 29 April 2024

Dada Zhang and Chun-Hsing Ho

The purpose of this paper is to investigate the vehicle-based sensor effect and pavement temperature on road condition assessment, as well as to compute a threshold value for the…

Abstract

Purpose

The purpose of this paper is to investigate the vehicle-based sensor effect and pavement temperature on road condition assessment, as well as to compute a threshold value for the classification of pavement conditions.

Design/methodology/approach

Four sensors were placed on the vehicle’s control arms and one inside the vehicle to collect vibration acceleration data for analysis. The Analysis of Variance (ANOVA) tests were performed to diagnose the effect of the vehicle-based sensors’ placement in the field. To classify road conditions and identify pavement distress (point of interest), the probability distribution was applied based on the magnitude values of vibration data.

Findings

Results from ANOVA indicate that pavement sensing patterns from the sensors placed on the front control arms were statistically significant, and there is no difference between the sensors placed on the same side of the vehicle (e.g., left or right side). A reference threshold (i.e., 1.7 g) was computed from the distribution fitting method to classify road conditions and identify the road distress based on the magnitude values that combine all acceleration along three axes. In addition, the pavement temperature was found to be highly correlated with the sensing patterns, which is noteworthy for future projects.

Originality/value

The paper investigates the effect of pavement sensors’ placement in assessing road conditions, emphasizing the implications for future road condition assessment projects. A threshold value for classifying road conditions was proposed and applied in class assignments (I-17 highway projects).

Details

Built Environment Project and Asset Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-124X

Keywords

Book part
Publication date: 4 June 2024

Nima Dadashzadeh, Serio Agriesti, Hashmatullah Sadid, Arnór B. Elvarsson, Claudio Roncoli and Constantinos Antoniou

Early studies projected potential societal, economic and environmental benefits by the widespread deployment of Autonomous and Connected Transport (ACT) promising a significant…

Abstract

Early studies projected potential societal, economic and environmental benefits by the widespread deployment of Autonomous and Connected Transport (ACT) promising a significant reduction of transport costs and improvement in road safety. An effective way of assessing ACT impact is via simulations, where results are largely affected by the scenarios defining the ACT development. However, modelled scenarios are very diverse due to the huge uncertainty in ACT development and deployment. This chapter aims to shed light on the different ACT simulation scenarios and sustainability aspects that should be considered while developing or reporting the simulation results. To this end, this chapter discusses the various simulation approaches, what the required (or the typically utilised) pipelines are, and how some components are more important or less important than in ‘classic’ modelling and simulation approaches. Special focus is dedicated to the uncertainty related to ACT operational parameters and how these will impact transport modelling. To address said uncertainty, an analysis of current approaches to scenario building is provided, as the chapter guides the reader through different methodologies and clusters them in relation to the desired indicators. Finally, the chapter identifies and proposes Key Performance Indicators (KPIs) that are useful when applying simulation tools to assess ACT scenarios. These KPIs can be used for simulation scenario development to test particular sustainability aspects of ACT deployment and relevant policies.

Book part
Publication date: 4 June 2024

Nikolaos Gavanas

Apart from the challenges related to vehicle technology, the wide-scale deployment of autonomous vehicles (AVs) in cities is linked to unprecedented opportunities and unforeseen…

Abstract

Apart from the challenges related to vehicle technology, the wide-scale deployment of autonomous vehicles (AVs) in cities is linked to unprecedented opportunities and unforeseen impacts. These refer to mobility conditions, infrastructure, land use, wider socio-economic factors, energy use and environmental and climate effects. AVs may affect all these in positive or negative ways, promoting or obstructing the promotion of specific aspects of sustainable urban development. An integrated planning framework is needed to maximise the positive impacts and mitigate the negative ones. The main obstacle in the process of developing such a framework is the absence of empirical data and experience from the implementation of this emerging technology. This chapter outlines the possible impacts of AVs and discusses their uncertainty and trade-offs in relation to sustainable urban development. The categorisation of impacts derives from the priorities of the UN Sustainable Development Goal (SDG) 11: Make cities and human settlements inclusive, safe, resilient, and sustainable. The chapter also highlights the lack of data for the development of an evidence-based planning approach and suggests relevant recommendations to planners. In contrast to the current lack of data, the future abundance of Big Data collected by autonomous road transport systems is discussed in the context of future urban planning purposes. Based on the above, the chapter concludes by stressing the importance of an integrated urban transport planning approach that ensures a positive contribution of AVs to sustainable urban development. Hence, it offers valuable recommendations for policymakers in a range of fields.

Details

Sustainable Automated and Connected Transport
Type: Book
ISBN: 978-1-80382-350-8

Keywords

Article
Publication date: 29 February 2024

Atefeh Hemmati, Mani Zarei and Amir Masoud Rahmani

Big data challenges and opportunities on the Internet of Vehicles (IoV) have emerged as a transformative paradigm to change intelligent transportation systems. With the growth of…

Abstract

Purpose

Big data challenges and opportunities on the Internet of Vehicles (IoV) have emerged as a transformative paradigm to change intelligent transportation systems. With the growth of data-driven applications and the advances in data analysis techniques, the potential for data-adaptive innovation in IoV applications becomes an outstanding development in future IoV. Therefore, this paper aims to focus on big data in IoV and to provide an analysis of the current state of research.

Design/methodology/approach

This review paper uses a systematic literature review methodology. It conducts a thorough search of academic databases to identify relevant scientific articles. By reviewing and analyzing the primary articles found in the big data in the IoV domain, 45 research articles from 2019 to 2023 were selected for detailed analysis.

Findings

This paper discovers the main applications, use cases and primary contexts considered for big data in IoV. Next, it documents challenges, opportunities, future research directions and open issues.

Research limitations/implications

This paper is based on academic articles published from 2019 to 2023. Therefore, scientific outputs published before 2019 are omitted.

Originality/value

This paper provides a thorough analysis of big data in IoV and considers distinct research questions corresponding to big data challenges and opportunities in IoV. It also provides valuable insights for researchers and practitioners in evolving this field by examining the existing fields and future directions for big data in the IoV ecosystem.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 26 April 2024

Xue Xin, Yuepeng Jiao, Yunfeng Zhang, Ming Liang and Zhanyong Yao

This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic…

Abstract

Purpose

This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic response signals.

Design/methodology/approach

The paper conducts time-frequency analysis on signals of pavement dynamic response initially. It also uses two common noise reduction methods, namely, low-pass filtering and wavelet decomposition reconstruction, to evaluate their effectiveness in reducing noise in these signals. Furthermore, as these signals are generated in response to vehicle loading, they contain a substantial amount of data and are prone to environmental interference, potentially resulting in outliers. Hence, it becomes crucial to extract dynamic strain response features (e.g. peaks and peak intervals) in real-time and efficiently.

Findings

The study introduces an improved density-based spatial clustering of applications with Noise (DBSCAN) algorithm for identifying outliers in denoised data. The results demonstrate that low-pass filtering is highly effective in reducing noise in pavement dynamic response signals within specified frequency ranges. The improved DBSCAN algorithm effectively identifies outliers in these signals through testing. Furthermore, the peak detection process, using the enhanced findpeaks function, consistently achieves excellent performance in identifying peak values, even when complex multi-axle heavy-duty truck strain signals are present.

Originality/value

The authors identified a suitable frequency domain range for low-pass filtering in asphalt road dynamic response signals, revealing minimal amplitude loss and effective strain information reflection between road layers. Furthermore, the authors introduced the DBSCAN-based anomaly data detection method and enhancements to the Matlab findpeaks function, enabling the detection of anomalies in road sensor data and automated peak identification.

Details

Smart and Resilient Transportation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2632-0487

Keywords

Content available
Article
Publication date: 12 December 2023

Mustafa Çimen, Damla Benli, Merve İbiş Bozyel and Mehmet Soysal

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation…

Abstract

Purpose

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation operations, induce a significant economic impact. Despite the increasing academic attention to the field, literature still fails to match the needs of and opportunities in the growing industrial practices. In particular, the literature can grow upon the ideas on sustainability, Industry 4.0 and collaboration, which shape future practices not only in logistics but also in many other industries. This review has the potential to enhance and accelerate the development of relevant literature that matches the challenges confronted in industrial problems. Furthermore, this review can help to explore the existing methods, algorithms and techniques employed to address this problem, reveal directions and generate inspiration for potential improvements.

Design/methodology/approach

This study provides a literature review on VAPs, focusing on quantitative models that incorporate any of the following emerging logistics trends: sustainability, Industry 4.0 and logistics collaboration.

Findings

In the literature, sustainability interactions have been limited to environmental externalities (mostly reducing operational-level emissions) and economic considerations; however, emissions generated throughout the supply chain, other environmental externalities such as waste and product deterioration, or the level of stakeholder engagement, etc., are to be monitored in order to achieve overall climate-neutral services to the society. Moreover, even though there are many types of collaboration (such as co-opetition and vertical collaboration) and Industry 4.0 opportunities (such as sharing information and comanaging distribution operations) that could improve vehicle allocation operations, these topics have not yet received sufficient attention from researchers.

Originality/value

The scientific contribution of this study is twofold: (1) This study analyses decision models of each reviewed article in terms of decision variable, constraint and assumption sets, objectives, modeling and solving approaches, the contribution of the article and the way that any of sustainability, Industry 4.0 and collaboration aspects are incorporated into the model. (2) The authors provide a discussion on the gaps in the related literature, particularly focusing on practical opportunities and serving climate-neutrality targets, carried out under four main streams: logistics collaboration possibilities, supply chain risks, smart solutions and various other potential practices. As a result, the review provides several gaps in the literature and/or potential research ideas that can improve the literature and may provide positive industrial impacts, particularly on how logistics collaboration may be further engaged, which supply chain risks are to be incorporated into decision models, and how smart solutions can be employed to cope with uncertainty and improve the effectiveness and efficiency of operations.

Details

The International Journal of Logistics Management, vol. 35 no. 3
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 16 April 2024

Ali Beiki Ashkezari, Mahsa Zokaee, Erfan Rabbani, Masoud Rabbani and Amir Aghsami

Pre-positioning and distributing relief items are important parts of disaster management as it simultaneously considers activities from both pre- and post-disaster stages. This…

Abstract

Purpose

Pre-positioning and distributing relief items are important parts of disaster management as it simultaneously considers activities from both pre- and post-disaster stages. This study aims to address this problem with a novel mathematical model.

Design/methodology/approach

In this research, a bi-objective mixed-integer linear programming model is developed to tackle pre-positioning and distributing relief items, and it is formulated as an integrated location-allocation-routing problem with uncertain parameters. The humanitarian supply chain consists of relief facilities (RFs) and demand points (DPs). Perishable and imperishable relief commodities (RCs), different types of vehicles, different transportation modes, a time window for delivering perishable commodities and the occurrence of unmet demand are considered. A scenario-based game theory is applied for purchasing RCs from different suppliers and an integrated best-worst method-technique for order of preference by similarity to ideal solution technique is implemented to determine the importance of DPs. The proposed model is used to solve several random test problems for verification, and to validate the model, Iran’s flood in 2019 is investigated as a case study for which useful managerial insights are provided.

Findings

Managers can effectively adjust their preferences towards response time and total cost of the network and use sensitivity analysis results in their decisions.

Originality/value

The model locates RFs, allocates DPs to RFs in the pre-disaster stage, and determines the routing of RCs from RFs to DPs in the post-disaster stage with respect to minimizing total costs and response time of the humanitarian logistics network.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Book part
Publication date: 4 June 2024

Dominik Schallauer, Aggelos Soteropoulos, Henriette Cornet, Wolfram Klar and Alexander Fürdös

Many countries and regions have recognised the potential of automated transport as a solution to cover mobility needs in a sustainable way. They have implemented dedicated…

Abstract

Many countries and regions have recognised the potential of automated transport as a solution to cover mobility needs in a sustainable way. They have implemented dedicated strategies and allowed trial operations of Automated Vehicles (AVs) within their national frameworks.

This chapter conducts an analysis of the legal frameworks for AV trial operations in 11 European countries. It reviews existing laws and regulations and includes results from an online survey with national stakeholders and experts experienced in AV testing.

The results reveal very different approaches among European countries. Moreover, results indicate a stronger focus on technical safety aspects of the vehicles rather than on operational procedures and mobility integration, such as incorporating AV services into existing public transport systems.

This high level of disparity between the different European legal frameworks poses a considerable barrier to a rollout of the technologies and methodologies for AVs without cross-border and cross-supplier conflicts. Furthermore, when moving to the deployment of real services in the near future a common European framework and a stronger focus on operational procedures are essential for the implementation of automated transport services in order to cover the mobility needs of people in a more sustainable way (e.g. first/last mile to public transport).

European countries should further integrate operational aspects in the terms of services that are integrated in public transport, align deployment of AVs with national and local sustainability goals and focus on use cases beyond private vehicles to foster the transition to a more sustainable future of transport.

Article
Publication date: 30 April 2024

C. Bharanidharan, S. Malathi and Hariprasath Manoharan

The potential of vehicle ad hoc networks (VANETs) to improve driver and passenger safety and security has made them a hot topic in the field of intelligent transportation systems…

Abstract

Purpose

The potential of vehicle ad hoc networks (VANETs) to improve driver and passenger safety and security has made them a hot topic in the field of intelligent transportation systems (ITSs). VANETs have different characteristics and system architectures from mobile ad hoc networks (MANETs), with a primary focus on vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. But protecting VANETs from malicious assaults is crucial because they can undermine network security and safety.

Design/methodology/approach

The black hole attack is a well-known danger to VANETs. It occurs when a hostile node introduces phony routing tables into the network, potentially damaging it and interfering with communication. A safe ad hoc on-demand distance vector (AODV) routing protocol has been created in response to this issue. By adding cryptographic features for source and target node verification to the route request (RREQ) and route reply (RREP) packets, this protocol improves upon the original AODV routing system.

Findings

Through the use of cryptographic-based encryption and decryption techniques, the suggested method fortifies the VANET connection. In addition, other network metrics are taken into account to assess the effectiveness of the secure AODV routing protocol under black hole attacks, including packet loss, end-to-end latency, packet delivery ratio (PDR) and routing request overhead. Results from simulations using an NS-2.33 simulator show how well the suggested fix works to enhance system performance and lessen the effects of black hole assaults on VANETs.

Originality/value

All things considered, the safe AODV routing protocol provides a strong method for improving security and dependability in VANET systems, protecting against malevolent attacks and guaranteeing smooth communication between cars and infrastructure.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Book part
Publication date: 4 June 2024

Nikolas Thomopoulos, Maria Attard, Yoram Shiftan and Lena Zeisel

The 26th United Nations Climate Change Conference of the Parties (COP26) has reinvigorated the policy focus on sustainable transport. Automated and Connected Transport (ACT) has…

Abstract

The 26th United Nations Climate Change Conference of the Parties (COP26) has reinvigorated the policy focus on sustainable transport. Automated and Connected Transport (ACT) has been featured as a promising technology-based option to aid in meeting the Sustainable Development Goals (SDGs). Despite progress in certain areas of sustainability, there are still a lot of SDGs where limited progress has been observed since the 2015 Paris Agreement, particularly regarding the social pillar of sustainability which is reflected from the user perspective. This chapter will set the scene for this edited volume first by contrasting ACT potential with the SDGs and then by highlighting the requirement to focus more on addressing user needs through ACT. Remarkably, scholars have been increasingly sceptical about the transition to fully automated and connected vehicles, thus it is pertinent to highlight relevant opportunities and risks. Chapter recommendations foster the promotion of a Quadruple Helix approach to operationalise the inclusion of social concerns (e.g. gender balance and equity) in Sustainable Urban Mobility Plans (SUMP) across the world.

1 – 10 of 286