Search results

1 – 10 of over 3000
Open Access
Article
Publication date: 23 October 2023

Jan Svanberg, Tohid Ardeshiri, Isak Samsten, Peter Öhman, Presha E. Neidermeyer, Tarek Rana, Frank Maisano and Mats Danielson

The purpose of this study is to develop a method to assess social performance. Traditionally, environment, social and governance (ESG) rating providers use subjectively weighted…

Abstract

Purpose

The purpose of this study is to develop a method to assess social performance. Traditionally, environment, social and governance (ESG) rating providers use subjectively weighted arithmetic averages to combine a set of social performance (SP) indicators into one single rating. To overcome this problem, this study investigates the preconditions for a new methodology for rating the SP component of the ESG by applying machine learning (ML) and artificial intelligence (AI) anchored to social controversies.

Design/methodology/approach

This study proposes the use of a data-driven rating methodology that derives the relative importance of SP features from their contribution to the prediction of social controversies. The authors use the proposed methodology to solve the weighting problem with overall ESG ratings and further investigate whether prediction is possible.

Findings

The authors find that ML models are able to predict controversies with high predictive performance and validity. The findings indicate that the weighting problem with the ESG ratings can be addressed with a data-driven approach. The decisive prerequisite, however, for the proposed rating methodology is that social controversies are predicted by a broad set of SP indicators. The results also suggest that predictively valid ratings can be developed with this ML-based AI method.

Practical implications

This study offers practical solutions to ESG rating problems that have implications for investors, ESG raters and socially responsible investments.

Social implications

The proposed ML-based AI method can help to achieve better ESG ratings, which will in turn help to improve SP, which has implications for organizations and societies through sustainable development.

Originality/value

To the best of the authors’ knowledge, this research is one of the first studies that offers a unique method to address the ESG rating problem and improve sustainability by focusing on SP indicators.

Details

Sustainability Accounting, Management and Policy Journal, vol. 14 no. 7
Type: Research Article
ISSN: 2040-8021

Keywords

Article
Publication date: 18 August 2023

Enas Hendawy, David G. McMillan, Zaki M. Sakr and Tamer Mohamed Shahwan

This paper aims to introduce a new perspective on long-term stock return predictability by focusing on the relative (individual and hybrid) informative power of a wide range of…

Abstract

Purpose

This paper aims to introduce a new perspective on long-term stock return predictability by focusing on the relative (individual and hybrid) informative power of a wide range of accounting (firm-related), technical and macroeconomic factors while considering the past performance of the stocks using machine learning algorithms.

Design/methodology/approach

The sample includes a panel data set of 94 non-financial firms listed in Egyptian Exchange 100 index from 2014: Q1 to 2019: Q4. Relativity has been investigated by comparing relevant factors’ individual and combined informative power and differentiating between losers and winners based on historical stock returns. To predict the quarterly stock returns, Gaussian process regression (GPR) has been used. The robustness of the results is examined through the out-of-sample test. This study also uses linear regression (LR) as a benchmark model.

Findings

The past performance and the presence of other predictors influence the informative power of relevant factors and hence their predictive ability. The out-of-sample results show a trade-off between GPR and LR with proven superiority to GPR in limited experiments. The individual informative power outperforms the hybrid power, in which macroeconomic indicators outperform the remaining sets of indicators for losers, while winners show mixed results in terms of various performance evaluation metrics. Prediction accuracy is generally higher for losers than for winners.

Practical implications

This study provides interesting insight into the dynamic nature of the predictor variables in terms of stock return predictability. Hence, this study also deepens the understanding of asset pricing in a way that directly contributes to practitioners’ portfolio diversification strategies.

Originality/value

In concern of the chaos of factors in the literature and its accompanying misleading conclusions, this study takes another look at the approach that studies stock return predictability. To the best of the authors’ knowledge, this is the first study in the Egyptian context that re-examines the predictive power of the previously discovered factors from a different perspective that highlights their relative nature.

Details

Journal of Financial Reporting and Accounting, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-2517

Keywords

Article
Publication date: 25 December 2023

Umair Khan, William Pao, Karl Ezra Salgado Pilario, Nabihah Sallih and Muhammad Rehan Khan

Identifying the flow regime is a prerequisite for accurately modeling two-phase flow. This paper aims to introduce a comprehensive data-driven workflow for flow regime…

72

Abstract

Purpose

Identifying the flow regime is a prerequisite for accurately modeling two-phase flow. This paper aims to introduce a comprehensive data-driven workflow for flow regime identification.

Design/methodology/approach

A numerical two-phase flow model was validated against experimental data and was used to generate dynamic pressure signals for three different flow regimes. First, four distinct methods were used for feature extraction: discrete wavelet transform (DWT), empirical mode decomposition, power spectral density and the time series analysis method. Kernel Fisher discriminant analysis (KFDA) was used to simultaneously perform dimensionality reduction and machine learning (ML) classification for each set of features. Finally, the Shapley additive explanations (SHAP) method was applied to make the workflow explainable.

Findings

The results highlighted that the DWT + KFDA method exhibited the highest testing and training accuracy at 95.2% and 88.8%, respectively. Results also include a virtual flow regime map to facilitate the visualization of features in two dimension. Finally, SHAP analysis showed that minimum and maximum values extracted at the fourth and second signal decomposition levels of DWT are the best flow-distinguishing features.

Practical implications

This workflow can be applied to opaque pipes fitted with pressure sensors to achieve flow assurance and automatic monitoring of two-phase flow occurring in many process industries.

Originality/value

This paper presents a novel flow regime identification method by fusing dynamic pressure measurements with ML techniques. The authors’ novel DWT + KFDA method demonstrates superior performance for flow regime identification with explainability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 May 2024

Lin Wu, Miao Wang, Ajay Kumar and Tsan-Ming Choi

The call for supply chain transparency (SCT), especially the environmental, social and governance (ESG) aspect, is getting increasingly louder. Based on the signaling theory, our…

Abstract

Purpose

The call for supply chain transparency (SCT), especially the environmental, social and governance (ESG) aspect, is getting increasingly louder. Based on the signaling theory, our study investigates the operational benefit of supply chain transparency in terms of ESG (SCT-ESG). To further clarify the signaling process, the moderating roles of digitalization of the firm and signal strength are also examined.

Design/methodology/approach

Longitudinal secondary data from multiple databases are matched and analyzed using ordinary least squares (OLS) regressions to validate the proposed hypotheses.

Findings

Results suggest that with SCT-ESG, firms have a weakened disparity between production variance and demand variance, and the supply chain experiences a reduced bullwhip effect. Further, digitalization of the focal company and signal strength reinforce the negative effect of SCT-ESG on the bullwhip effect.

Originality/value

The study integrates the SCT and ESG literature through SCT-ESG, extending benefits of ESG disclosure to the supply chain context. It extends the application of the signaling theory in OSCM by including contextual factors of digitalization and signal strength.

Details

International Journal of Operations & Production Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 27 February 2024

Feng Qian, Yongsheng Tu, Chenyu Hou and Bin Cao

Automatic modulation recognition (AMR) is a challenging problem in intelligent communication systems and has wide application prospects. At present, although many AMR methods…

Abstract

Purpose

Automatic modulation recognition (AMR) is a challenging problem in intelligent communication systems and has wide application prospects. At present, although many AMR methods based on deep learning have been proposed, the methods proposed by these works cannot be directly applied to the actual wireless communication scenario, because there are usually two kinds of dilemmas when recognizing the real modulated signal, namely, long sequence and noise. This paper aims to effectively process in-phase quadrature (IQ) sequences of very long signals interfered by noise.

Design/methodology/approach

This paper proposes a general model for a modulation classifier based on a two-layer nested structure of long short-term memory (LSTM) networks, called a two-layer nested structure (TLN)-LSTM, which exploits the time sensitivity of LSTM and the ability of the nested network structure to extract more features, and can achieve effective processing of ultra-long signal IQ sequences collected from real wireless communication scenarios that are interfered by noise.

Findings

Experimental results show that our proposed model has higher recognition accuracy for five types of modulation signals, including amplitude modulation, frequency modulation, gaussian minimum shift keying, quadrature phase shift keying and differential quadrature phase shift keying, collected from real wireless communication scenarios. The overall classification accuracy of the proposed model for these signals can reach 73.11%, compared with 40.84% for the baseline model. Moreover, this model can also achieve high classification performance for analog signals with the same modulation method in the public data set HKDD_AMC36.

Originality/value

At present, although many AMR methods based on deep learning have been proposed, these works are based on the model’s classification results of various modulated signals in the AMR public data set to evaluate the signal recognition performance of the proposed method rather than collecting real modulated signals for identification in actual wireless communication scenarios. The methods proposed in these works cannot be directly applied to actual wireless communication scenarios. Therefore, this paper proposes a new AMR method, dedicated to the effective processing of the collected ultra-long signal IQ sequences that are interfered by noise.

Details

International Journal of Web Information Systems, vol. 20 no. 3
Type: Research Article
ISSN: 1744-0084

Keywords

Open Access
Article
Publication date: 29 January 2024

Miaoxian Guo, Shouheng Wei, Chentong Han, Wanliang Xia, Chao Luo and Zhijian Lin

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical…

Abstract

Purpose

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical modeling takes a lot of effort. To predict the surface roughness of milling processing, this paper aims to construct a neural network based on deep learning and data augmentation.

Design/methodology/approach

This study proposes a method consisting of three steps. Firstly, the machine tool multisource data acquisition platform is established, which combines sensor monitoring with machine tool communication to collect processing signals. Secondly, the feature parameters are extracted to reduce the interference and improve the model generalization ability. Thirdly, for different expectations, the parameters of the deep belief network (DBN) model are optimized by the tent-SSA algorithm to achieve more accurate roughness classification and regression prediction.

Findings

The adaptive synthetic sampling (ADASYN) algorithm can improve the classification prediction accuracy of DBN from 80.67% to 94.23%. After the DBN parameters were optimized by Tent-SSA, the roughness prediction accuracy was significantly improved. For the classification model, the prediction accuracy is improved by 5.77% based on ADASYN optimization. For regression models, different objective functions can be set according to production requirements, such as root-mean-square error (RMSE) or MaxAE, and the error is reduced by more than 40% compared to the original model.

Originality/value

A roughness prediction model based on multiple monitoring signals is proposed, which reduces the dependence on the acquisition of environmental variables and enhances the model's applicability. Furthermore, with the ADASYN algorithm, the Tent-SSA intelligent optimization algorithm is introduced to optimize the hyperparameters of the DBN model and improve the optimization performance.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 26 January 2022

Rajashekhar U., Neelappa and Harish H.M.

The natural control, feedback, stimuli and protection of these subsequent principles founded this project. Via properly conducted experiments, a multilayer computer rehabilitation…

Abstract

Purpose

The natural control, feedback, stimuli and protection of these subsequent principles founded this project. Via properly conducted experiments, a multilayer computer rehabilitation system was created that integrated natural interaction assisted by electroencephalogram (EEG), which enabled the movements in the virtual environment and real wheelchair. For blind wheelchair operator patients, this paper involved of expounding the proper methodology. For educating the value of life and independence of blind wheelchair users, outcomes have proven that virtual reality (VR) with EEG signals has that potential.

Design/methodology/approach

Individuals face numerous challenges with many disorders, particularly when multiple dysfunctions are diagnosed and especially for visually effected wheelchair users. This scenario, in reality, creates in a degree of incapacity on the part of the wheelchair user in terms of performing simple activities. Based on their specific medical needs, confined patients are treated in a modified method. Independent navigation is secured for individuals with vision and motor disabilities. There is a necessity for communication which justifies the use of VR in this navigation situation. For the effective integration of locomotion besides, it must be under natural guidance. EEG, which uses random brain impulses, has made significant progress in the field of health. The custom of an automated audio announcement system modified to have the help of VR and EEG for the training of locomotion and individualized interaction of wheelchair users with visual disability is demonstrated in this study through an experiment. Enabling the patients who were otherwise deemed incapacitated to participate in social activities, as the aim was to have efficient connections.

Findings

To protect their life straightaway and to report all these disputes, the military system should have high speed, more precise portable prototype device for nursing the soldier health, recognition of solider location and report about health sharing system to the concerned system. Field programmable gate array (FPGA)-based soldier’s health observing and position gratitude system is proposed in this paper. Reliant on heart rate which is centered on EEG signals, the soldier’s health is observed on systematic bases. By emerging Verilog hardware description language (HDL) programming language and executing on Artix-7 development FPGA board of part name XC7ACSG100t the whole work is approved in a Vivado Design Suite. Classification of different abnormalities and cloud storage of EEG along with the type of abnormalities, artifact elimination, abnormalities identification based on feature extraction, exist in the segment of suggested architecture. Irregularity circumstances are noticed through developed prototype system and alert the physically challenged (PHC) individual via an audio announcement. An actual method for eradicating motion artifacts from EEG signals that have anomalies in the PHC person’s brain has been established, and the established system is a portable device that can deliver differences in brain signal variation intensity. Primarily the EEG signals can be taken and the undesirable artifact can be detached, later structures can be mined by discrete wavelet transform these are the two stages through which artifact deletion can be completed. The anomalies in signal can be noticed and recognized by using machine learning algorithms known as multirate support vector machine classifiers when the features have been extracted using a combination of hidden Markov model (HMM) and Gaussian mixture model (GMM). Intended for capable declaration about action taken by a blind person, these result signals are protected in storage devices and conveyed to the controller. Pretending daily motion schedules allows the pretentious EEG signals to be caught. Aimed at the validation of planned system, the database can be used and continued with numerous recorded signals of EEG. The projected strategy executes better in terms of re-storing theta, delta, alpha and beta complexes of the original EEG with less alteration and a higher signal to noise ratio (SNR) value of the EEG signal, which illustrates in the quantitative analysis. The projected method used Verilog HDL and MATLAB software for both formation and authorization of results to yield improved results. Since from the achieved results, it is initiated that 32% enhancement in SNR, 14% in mean squared error (MSE) and 65% enhancement in recognition of anomalies, hence design is effectively certified and proved for standard EEG signals data sets on FPGA.

Originality/value

The proposed system can be used in military applications as it is high speed and excellent precise in terms of identification of abnormality, the developed system is portable and very precise. FPGA-based soldier’s health observing and position gratitude system is proposed in this paper. Reliant on heart rate which is centered on EEG signals the soldier health is observed in systematic bases. The proposed system is developed using Verilog HDL programming language and executing on Artix-7 development FPGA board of part name XC7ACSG100t and synthesised using in Vivado Design Suite software tool.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 2 May 2024

Neveen Barakat, Liana Hajeir, Sarah Alattal, Zain Hussein and Mahmoud Awad

The objective of this paper is to develop a condition-based maintenance (CBM) scheme for pneumatic cylinders. The CBM scheme will detect two common types of air leaking failure…

Abstract

Purpose

The objective of this paper is to develop a condition-based maintenance (CBM) scheme for pneumatic cylinders. The CBM scheme will detect two common types of air leaking failure modes and identify the leaky/faulty cylinder. The successful implementation of the proposed scheme will reduce energy consumption, scrap and rework, and time to repair.

Design/methodology/approach

Effective implementation of maintenance is important to reduce operation cost, improve productivity and enhance quality performance at the same time. Condition-based monitoring is an effective maintenance scheme where maintenance is triggered based on the condition of the equipment monitored either real time or at certain intervals. Pneumatic air systems are commonly used in many industries for packaging, sorting and powering air tools among others. A common failure mode of pneumatic cylinders is air leaks which is difficult to detect for complex systems with many connections. The proposed method consists of monitoring the stroke speed profile of the piston inside the pneumatic cylinder using hall effect sensors. Statistical features are extracted from the speed profiles and used to develop a fault detection machine learning model. The proposed method is demonstrated using a real-life case of tea packaging machines.

Findings

Based on the limited data collected, the ensemble machine learning algorithm resulted in 88.4% accuracy. The algorithm can detect failures as soon as they occur based on majority vote rule of three machine learning models.

Practical implications

Early air leak detection will improve quality of packaged tea bags and provide annual savings due to time to repair and energy waste reduction. The average annual estimated savings due to the implementation of the new CBM method is $229,200 with a payback period of less than two years.

Originality/value

To the best of the authors’ knowledge, this paper is the first in terms of proposing a CBM for pneumatic systems air leaks using piston speed. Majority, if not all, current detection methods rely on expensive equipment such as infrared or ultrasonic sensors. This paper also contributes to the research gap of economic justification of using CBM.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 24 May 2022

Jawad Ahmad Dar, Kamal Kr Srivastava and Sajaad Ahmad Lone

The Covid-19 prediction process is more indispensable to handle the spread and death occurred rate because of Covid-19. However early and precise prediction of Covid-19 is more…

Abstract

Purpose

The Covid-19 prediction process is more indispensable to handle the spread and death occurred rate because of Covid-19. However early and precise prediction of Covid-19 is more difficult because of different sizes and resolutions of input image. Thus these challenges and problems experienced by traditional Covid-19 detection methods are considered as major motivation to develop JHBO-based DNFN.

Design/methodology/approach

The major contribution of this research is to design an effectual Covid-19 detection model using devised JHBO-based DNFN. Here, the audio signal is considered as input for detecting Covid-19. The Gaussian filter is applied to input signal for removing the noises and then feature extraction is performed. The substantial features, like spectral roll-off, spectral bandwidth, Mel-frequency cepstral coefficients (MFCC), spectral flatness, zero crossing rate, spectral centroid, mean square energy and spectral contract are extracted for further processing. Finally, DNFN is applied for detecting Covid-19 and the deep leaning model is trained by designed JHBO algorithm. Accordingly, the developed JHBO method is newly designed by incorporating Honey Badger optimization Algorithm (HBA) and Jaya algorithm.

Findings

The performance of proposed hybrid optimization-based deep learning algorithm is estimated by means of two performance metrics, namely testing accuracy, sensitivity and specificity of 0.9176, 0.9218 and 0.9219.

Research limitations/implications

The JHBO-based DNFN approach is developed for Covid-19 detection. The developed approach can be extended by including other hybrid optimization algorithms as well as other features can be extracted for further improving the detection performance.

Practical implications

The proposed Covid-19 detection method is useful in various applications, like medical and so on.

Originality/value

Developed JHBO-enabled DNFN for Covid-19 detection: An effective Covid-19 detection technique is introduced based on hybrid optimization–driven deep learning model. The DNFN is used for detecting Covid-19, which classifies the feature vector as Covid-19 or non-Covid-19. Moreover, the DNFN is trained by devised JHBO approach, which is introduced by combining HBA and Jaya algorithm.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 29 March 2024

Bingbing Qi, Lijun Xu and Xiaogang Liu

The purpose of this paper is to exploit the multiple-Toeplitz matrices reconstruction method combined with quadratic spatial smoothing processing to improve the…

Abstract

Purpose

The purpose of this paper is to exploit the multiple-Toeplitz matrices reconstruction method combined with quadratic spatial smoothing processing to improve the direction-of-arrival (DOA) estimation performance of coherent signals at low signal-to-noise ratio (SNRs).

Design/methodology/approach

An improved multiple-Toeplitz matrices reconstruction method is proposed via quadratic spatial smoothing processing. Our proposed method takes advantage of the available information contained in the auto-covariance matrices of individual Toeplitz matrices and the cross-covariance matrices of different Toeplitz matrices, which results in a higher noise suppression ability.

Findings

Theoretical analysis and simulation results show that, compared with the existing Toeplitz matrix processing methods, the proposed method improves the DOA estimation performance in cases with a low SNR. Especially for the cases with a low SNR and small snapshot number as well as with closely spaced sources, the proposed method can achieve much better performance on estimation accuracy and resolution probability.

Research limitations/implications

The study investigates the possibility of reusing pre-existing designs for the DOA estimation of the coherent signals. The proposed technique enables achieve good estimation performance at low SNRs.

Practical implications

The paper includes implications for the DOA problem at low SNRs in communication systems.

Originality/value

The proposed method proved to be useful for the DOA estimation at low SNR.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 3000