Search results

1 – 10 of over 30000
Article
Publication date: 20 May 2024

R. Siva Subramanian, B. Yamini, Kothandapani Sudha and S. Sivakumar

The new customer churn prediction (CCP) utilizing deep learning is developed in this work. Initially, the data are collected from the WSDM-KKBox’s churn prediction challenge…

Abstract

Purpose

The new customer churn prediction (CCP) utilizing deep learning is developed in this work. Initially, the data are collected from the WSDM-KKBox’s churn prediction challenge dataset. Here, the time-varying data and the static data are aggregated, and then the statistic features and deep features with the aid of statistical measures and “Visual Geometry Group 16 (VGG16)”, accordingly, and the features are considered as feature 1 and feature 2. Further, both features are forwarded to the weighted feature fusion phase, where the modified exploration of driving training-based optimization (ME-DTBO) is used for attaining the fused features. It is then given to the optimized and ensemble-based dilated deep learning (OEDDL) model, which is “Temporal Context Networks (DTCN), Recurrent Neural Networks (RNN), and Long-Short Term Memory (LSTM)”, where the optimization is performed with the aid of ME-DTBO model. Finally, the predicted outcomes are attained and assimilated over other classical models.

Design/methodology/approach

The features are forwarded to the weighted feature fusion phase, where the ME-DTBO is used for attaining the fused features. It is then given to the OEDDL model, which is “DTCN, RNN, and LSTM”, where the optimization is performed with the aid of the ME-DTBO model.

Findings

The accuracy of the implemented CCP system was raised by 54.5% of RNN, 56.3% of deep neural network (DNN), 58.1% of LSTM and 60% of RNN + DTCN + LSTM correspondingly when the learning percentage is 55.

Originality/value

The proposed CCP framework using the proposed ME-DTBO and OEDDL is accurate and enhances the prediction performance.

Article
Publication date: 3 May 2024

Jin Ma and Tong Wu

Social network group decision-making (SNGDM) has rapidly developed because of the impact of social relationships on decision-making behavior. However, not only do social…

Abstract

Purpose

Social network group decision-making (SNGDM) has rapidly developed because of the impact of social relationships on decision-making behavior. However, not only do social relationships affect decision-making behavior, but decision-making behavior also affects social relationships. Such complicated interactions are rarely considered in current research. To bridge this gap, this study proposes an SNGDM model that considers the interaction between social trust relationships and opinion evolution.

Design/methodology/approach

First, the trust propagation and aggregation operators are improved to obtain a complete social trust relationship among decision-makers (DMs). Second, the evolution of preference information under the influence of trust relationships is measured, and the development of trust relationships during consensus interactions is predicted. Finally, the iteration of consensus interactions is simulated using an opinion dynamics model. A case study is used to verify the feasibility of the proposed model.

Findings

The proposed model can predict consensus achievement based on a group’s initial trust relationship and preference information and effectively captures the dynamic characteristics of opinion evolution in social networks.

Originality/value

This study proposes an SNGDM model that considers the interaction of trust and opinion. The proposed model improves trust propagation and aggregation operators, determines improved preference information based on the existing trust relationships and predicts the evolution of trust relationships in the consensus process. The dynamic interaction between the two accelerates DMs to reach a consensus.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 28 February 2024

Ahmed Jan, Muhammad F. Afzaal, Muhammad Mushtaq, Umer Farooq and Muzammil Hussain

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Abstract

Purpose

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Design/methodology/approach

The transport equations are transformed into nondimensional partial differential equations. The local nonsimilarity (LNS) technique is implemented to truncate nonsimilar dimensionless system. The LNS truncated equation can be treated as ordinary differential equations. The numerical results of the equation are accomplished through the implementation of the bvp4c solver, which leverages the fourth-order three-stage Lobatto IIIa formula as a finite difference scheme.

Findings

The findings of a comparative investigation carried out under diverse physical limitations demonstrate that ternary HNFs exhibit remarkably elevated thermal efficiency in contrast to conventional nanofluids.

Originality/value

The LNS approach (Mahesh et al., 2023; Khan et al., 20223; Farooq et al., 2023) that we have proposed is not currently being used to clarify the dynamical issue of HNF via porous media. The LNS method, in conjunction with the bvp4c up to its second truncation level, yields numerical solutions to nonlinear-coupled PDEs. Relevant results of the topic at hand, obtained by adjusting the appropriate parameters, are explained and shown visually via tables and diagrams.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Book part
Publication date: 5 April 2024

Alecos Papadopoulos

The author develops a bilateral Nash bargaining model under value uncertainty and private/asymmetric information, combining ideas from axiomatic and strategic bargaining theory…

Abstract

The author develops a bilateral Nash bargaining model under value uncertainty and private/asymmetric information, combining ideas from axiomatic and strategic bargaining theory. The solution to the model leads organically to a two-tier stochastic frontier (2TSF) setup with intra-error dependence. The author presents two different statistical specifications to estimate the model, one that accounts for regressor endogeneity using copulas, the other able to identify separately the bargaining power from the private information effects at the individual level. An empirical application using a matched employer–employee data set (MEEDS) from Zambia and a second using another one from Ghana showcase the applied potential of the approach.

Abstract

Details

Understanding Financial Risk Management, Third Edition
Type: Book
ISBN: 978-1-83753-253-7

Article
Publication date: 18 January 2024

Yarong Zhang and Meng Hu

The susceptible-infectious-susceptible (SIS) infectious disease models without spatial heterogeneity have limited applications, and the numerical simulation without considering…

Abstract

Purpose

The susceptible-infectious-susceptible (SIS) infectious disease models without spatial heterogeneity have limited applications, and the numerical simulation without considering models’ global existence and uniqueness of classical solutions might converge to an impractical solution. This paper aims to develop a robust and reliable numerical approach to the SIS epidemic model with spatial heterogeneity, which characterizes the horizontal and vertical transmission of the disease.

Design/methodology/approach

This study used stability analysis methods from nonlinear dynamics to evaluate the stability of SIS epidemic models. Additionally, the authors applied numerical solution methods from diffusion equations and heat conduction equations in fluid mechanics to infectious disease transmission models with spatial heterogeneity, which can guarantee a robustly stable and highly reliable numerical process. The findings revealed that this interdisciplinary approach not only provides a more comprehensive understanding of the propagation patterns of infectious diseases across various spatial environments but also offers new application directions in the fields of fluid mechanics and heat flow. The results of this study are highly significant for developing effective control strategies against infectious diseases while offering new ideas and methods for related fields of research.

Findings

Through theoretical analysis and numerical simulation, the distribution of infected persons in heterogeneous environments is closely related to the location parameters. The finding is suitable for clinical use.

Originality/value

The theoretical analysis of the stability theorem and the threshold dynamics guarantee robust stability and fast convergence of the numerical solution. It opens up a new window for a robust and reliable numerical study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 5 April 2024

Taining Wang and Daniel J. Henderson

A semiparametric stochastic frontier model is proposed for panel data, incorporating several flexible features. First, a constant elasticity of substitution (CES) production…

Abstract

A semiparametric stochastic frontier model is proposed for panel data, incorporating several flexible features. First, a constant elasticity of substitution (CES) production frontier is considered without log-transformation to prevent induced non-negligible estimation bias. Second, the model flexibility is improved via semiparameterization, where the technology is an unknown function of a set of environment variables. The technology function accounts for latent heterogeneity across individual units, which can be freely correlated with inputs, environment variables, and/or inefficiency determinants. Furthermore, the technology function incorporates a single-index structure to circumvent the curse of dimensionality. Third, distributional assumptions are eschewed on both stochastic noise and inefficiency for model identification. Instead, only the conditional mean of the inefficiency is assumed, which depends on related determinants with a wide range of choice, via a positive parametric function. As a result, technical efficiency is constructed without relying on an assumed distribution on composite error. The model provides flexible structures on both the production frontier and inefficiency, thereby alleviating the risk of model misspecification in production and efficiency analysis. The estimator involves a series based nonlinear least squares estimation for the unknown parameters and a kernel based local estimation for the technology function. Promising finite-sample performance is demonstrated through simulations, and the model is applied to investigate productive efficiency among OECD countries from 1970–2019.

Article
Publication date: 3 January 2024

Miao Ye, Lin Qiang Huang, Xiao Li Wang, Yong Wang, Qiu Xiang Jiang and Hong Bing Qiu

A cross-domain intelligent software-defined network (SDN) routing method based on a proposed multiagent deep reinforcement learning (MDRL) method is developed.

Abstract

Purpose

A cross-domain intelligent software-defined network (SDN) routing method based on a proposed multiagent deep reinforcement learning (MDRL) method is developed.

Design/methodology/approach

First, the network is divided into multiple subdomains managed by multiple local controllers, and the state information of each subdomain is flexibly obtained by the designed SDN multithreaded network measurement mechanism. Then, a cooperative communication module is designed to realize message transmission and message synchronization between the root and local controllers, and socket technology is used to ensure the reliability and stability of message transmission between multiple controllers to acquire global network state information in real time. Finally, after the optimal intradomain and interdomain routing paths are adaptively generated by the agents in the root and local controllers, a network traffic state prediction mechanism is designed to improve awareness of the cross-domain intelligent routing method and enable the generation of the optimal routing paths in the global network in real time.

Findings

Experimental results show that the proposed cross-domain intelligent routing method can significantly improve the network throughput and reduce the network delay and packet loss rate compared to those of the Dijkstra and open shortest path first (OSPF) routing methods.

Originality/value

Message transmission and message synchronization for multicontroller interdomain routing in SDN have long adaptation times and slow convergence speeds, coupled with the shortcomings of traditional interdomain routing methods, such as cumbersome configuration and inflexible acquisition of network state information. These drawbacks make it difficult to obtain global state information about the network, and the optimal routing decision cannot be made in real time, affecting network performance. This paper proposes a cross-domain intelligent SDN routing method based on a proposed MDRL method. First, the network is divided into multiple subdomains managed by multiple local controllers, and the state information of each subdomain is flexibly obtained by the designed SDN multithreaded network measurement mechanism. Then, a cooperative communication module is designed to realize message transmission and message synchronization between root and local controllers, and socket technology is used to ensure the reliability and stability of message transmission between multiple controllers to realize the real-time acquisition of global network state information. Finally, after the optimal intradomain and interdomain routing paths are adaptively generated by the agents in the root and local controllers, a prediction mechanism for the network traffic state is designed to improve awareness of the cross-domain intelligent routing method and enable the generation of the optimal routing paths in the global network in real time. Experimental results show that the proposed cross-domain intelligent routing method can significantly improve the network throughput and reduce the network delay and packet loss rate compared to those of the Dijkstra and OSPF routing methods.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 6 February 2024

Alireza Goudarzian and Rohallah Pourbagher

Conventional isolated dc–dc converters offer an efficient solution for performing voltage conversion with a large improved voltage gain. However, the small-signal analysis of…

29

Abstract

Purpose

Conventional isolated dc–dc converters offer an efficient solution for performing voltage conversion with a large improved voltage gain. However, the small-signal analysis of these converters shows that a right-half-plane (RHP) zero appears in their control-to-output transfer function, exhibiting a nonminimum-phase stability. This RHP zero can limit the frequency response and dynamic specifications of the converters; therefore, the output voltage response is sluggish. To overcome these problems, the purpose of this study is to analyze, model and design a new isolated forward single-ended primary-inductor converter (IFSEPIC) through RHP zero alleviation.

Design/methodology/approach

At first, the normal operation of the suggested IFSEPIC is studied. Then, its average model and control-to-output transfer function are derived. Based on the obtained model and Routh–Hurwitz criterion, the components are suitably designed for the proposed IFSEPIC, such that the derived dynamic model can eliminate the RHP zero.

Findings

The advantages of the proposed IFSEPIC can be summarized as: This converter can provide conditions to achieve fast dynamic behavior and minimum-phase stability, owing to the RHP zero cancellation; with respect to conventional isolated converters, a larger gain can be realized using the proposed topology; thus, it is possible to attain a smaller operating duty cycle; for conventional isolated converters, transformer core saturation is a major concern, owing to a large magnetizing current. However, the average value of the magnetizing current becomes zero for the proposed IFSEPIC, thereby avoiding core saturation, particularly at high frequencies; and the input current of the proposed converter is continuous, reducing input current ripple.

Originality/value

The key benefits of the proposed IFSEPIC are shown via comparisons. To validate the design method and theoretical findings, a practical implementation is presented.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 13 February 2024

Dinesh Kumar Kushwaha, Dilbagh Panchal and Anish Kumar Sachdeva

An integrated intuitionistic fuzzy (IF) modelling-based framework for examining the performance analysis of a packaging unit (PU) in three different stages has been proposed.

51

Abstract

Purpose

An integrated intuitionistic fuzzy (IF) modelling-based framework for examining the performance analysis of a packaging unit (PU) in three different stages has been proposed.

Design/methodology/approach

For the series and parallel configuration of PU, a mathematical model based on the intuitionistic fuzzy Lambda–Tau (IFLT) approach was developed in order to calculate various reliability parameters at various spreads. For determining membership and non-membership function-based reliability parameters for the top event, AND/OR gate transitions expression was employed.

Findings

For 15%–30% spread, unit’s availability for the membership function falls by 0.006442%, and it falls even more by 0.014907% with an increase in spread from 30% to 45%. In contrast, for 15%–30% spread, the availability of non-membership function-based systems reduces by 0.007491% and further diminishes. Risk analysis has presented applying an emerging approach called intuitionistic fuzzy failure mode and effect analysis (IFFMEA). For each of the stated failure causes, the output values of the intuitionistic fuzzy hybrid weighted Euclidean distance (IFHWED)-based IFFMEA have been tabulated. Failure causes like HP1, MT6, FB9, EL16, DR23, GR27, categorized under subsystems, namely hopper, motor, fluidized bed dryer, distributor, grader and bin, respectively, with corresponding IFFMEA output scores 1.0975, 1.0190, 0.8543, 1.0228, 0.9026, 1.0021, were the most critical one to contribute in the system’s failure.

Research limitations/implications

The limitation of the proposed framework lies in the fact that the results obtained for both reliability and risk aspects mainly depend on the correctness of raw data provided by the experts. Also, an approximate model of PU is obtained from plant experts to carry performance analysis, and hence more attention is required in constructing the model. Under IFLT, reliability parameters of PU have been calculated at various spreads to study and analyse the failure behaviour of the unit for both membership and non-membership function in the IFS of [0.6,0.8]. For both membership- and non-membership-based results, availability of the considered system shows decreasing trend. To improve the performance of the considered system, risk assessment was carried using IFFMEA technique, ranking all the critical failure causes against IFHWED score value, on which more attention should be paid so as to avoid sudden failure of unit.

Social implications

The livelihood of millions of farmers and workers depends on sugar industries. So perpetual running of these industries is very important from this viewpoint. On the basis of findings of reliability parameters, the maintenance manager could frame a correct maintenance policy for long-run availability of the sugar mills. This long-run availability will generate revenue, which, in turn, will ensure the livelihood of the farmers.

Originality/value

Mathematical modelling of the considered unit has been done applying basic expressions of AND/OR gate. IFTOPSIS approach has been implemented for ranking result comparison obtained under IFFMEA approach. Eventually, sensitivity analysis was also presented to demonstrate the stability of ranking of failure causes of PU.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 10 of over 30000