Search results

1 – 10 of over 5000
Article
Publication date: 14 September 2023

Deepak Byotra and Sanjay Sharma

This study aims to understand how the texture shape, number of textures and addition of nanoparticle additives in lubricants impact the dynamic characteristics of journal bearing…

Abstract

Purpose

This study aims to understand how the texture shape, number of textures and addition of nanoparticle additives in lubricants impact the dynamic characteristics of journal bearing by comparing six different texture shapes like triangle, chevron, arc, circle, rectangle and elliptical applied in pressure-increasing region under various geometrical and operating conditions.

Design/methodology/approach

The finite element method approach has been employed to solve governing Reynold’s equation, assuming iso-viscous Newtonian fluid, for computation of performance parameters like stiffness and damping coefficient, threshold speed, etc. By using a regression model, the impact of adding nanoparticles Al2O3 and CuO to the base lubricant on viscosity variation is calculated for selected temperature ranges and weight fractions of nanoparticles.

Findings

The arc-shaped texture with an area density of 28.27%, eccentricity ratio of 0.2 and texture depth of 0.6 exhibited 35.22% higher direct stiffness and 41.4% higher damping coefficient compared to the lowest value in the circle-shaped texture. Increasing the number of arc-shaped textures on the bearing surface with low area density led to declining stiffness and damping parameters. However, with nanoparticle additives, the arc-shaped texture further showed 10.75% and 8.11% improvement in stiffness and 9.99% and 4.87% enhancement in damping coefficient for Al2O3 and CuO, respectively, at 90 °C temperature and 0.5% weight fraction.

Originality/value

By understanding the influence of texture shapes on the dynamic characteristics, engineers can design bearings that exhibit improved stability and enhance overall performance.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 May 2023

Ji-Huan He, T.S. Amer, W.S. Amer, H.F. Elkafly and A.A. Galal

The purpose of this paper is to study the dynamical properties of a rotating rigid body (RB) containing a viscous incompressible fluid.

Abstract

Purpose

The purpose of this paper is to study the dynamical properties of a rotating rigid body (RB) containing a viscous incompressible fluid.

Design/methodology/approach

The Reynolds number is assumed to be small so that the governing equations can be easily obtained, and the asymptotic technique is used to solve the problem.

Findings

The effects of the various body parameter values on the motion’s behavior are theoretically elucidated, which can be used for optimization of the charged RB.

Originality/value

This paper finds the missing piece of the puzzle when it comes to the rotating RB containing a viscous fluid; it clearly elucidates graphically how the body parameters affect its dynamical properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 1 June 2023

Marcin Figat and Agnieszka Kwiek

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced…

1905

Abstract

Purpose

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced drag. The purpose of this paper is to determine whether a certain trend in the wingspan impact on aircraft dynamic stability can be identified. The secondary goal was to compare the response to control of flaps placed on a front and rear wing.

Design/methodology/approach

The aerodynamic data and control derivatives were obtained from the computational fluid dynamics computations performed by the MGAERO software. The equations of aircraft longitudinal motion in a state space form were used. The equations were built based on the aerodynamic coefficients, stability and control derivatives. The analysis of the dynamic stability was done in the MATLAB by solving the eigenvalue problem. The response to control was computed by the step response method using MATLAB.

Findings

The results of this study showed that because of a strong aerodynamic coupling, a nonlinear relation between the wing size and aircraft dynamic stability proprieties was observed. In the case of the flap deflection, stronger oscillation was observed for the front flap.

Originality/value

Results of dynamic stability of aircraft in the tandem wing configuration can be found in the literature, but those studies show outcomes of a single configuration, while this paper presents a comprehensive investigation into the impact of wingspan on aircraft dynamic stability. The results reveal that because of a strong aerodynamic coupling, the relation between the span factor and dynamic stability is nonlinear. Also, it has been demonstrated that the configuration of two wings with the same span is not the optimal one from the aerodynamic point of view.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 April 2024

Hongmei Qi, Kailin Yang, Sibin Wu and Joo Jung

Research on strategic alliances is concerned with two issues: continuation and reconfiguration. Building on prior research that examines the two issues separately, the paper…

Abstract

Purpose

Research on strategic alliances is concerned with two issues: continuation and reconfiguration. Building on prior research that examines the two issues separately, the paper studies them simultaneously. This paper aims to investigate how strategic alliances may exert the synergetic effect between dynamics and stability as well as to discuss the dynamic evolution process and influence factors of strategic alliances.

Design/methodology/approach

This paper describes the construction of a two-party evolutionary game model of alliance and partners. The model is used to analyze the evolution process of synergetic mechanism to determine when to terminate and when to continue with a partnership. Further, numerical simulation is used to quantify the results and to gain insight into the effects of various factors on the dynamic evolution of the synergetic mechanism.

Findings

This paper reveals several synergetic states of dynamics and stability in the alliances. The results show that synergy states are positively affected by the collaborative innovation benefits, alliance management capability, the intensity of intellectual property protection, liquidated damages and reputation losses, and negatively affected by the absorptive capacity of partners.

Practical implications

The study helps the alliance to achieve long-term development as well as to balance the paradoxical relationship. The results suggest that managers of strategic alliances should focus on building strong and long-term relationships in order to achieve high performance innovations. Managers should also pay close attention to their partners’ behaviors in previous alliances.

Originality/value

This paper provides new insights into the paradoxical relationship in alliance by revealing the evolution of synergetic mechanism between dynamics and stability. The results remind alliances to understand the relationship between dynamics and stability and to notice the influence factors of synergistic effects when they are making decisions.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 12 July 2023

Ji Kai, Ming Liu, Yue Wang and Ding Zhang

Nucleic acid testing is an effective method of accurate prevention and control and a key measure to block the spread of the epidemic. However, the fraud in nucleic acid testing…

Abstract

Purpose

Nucleic acid testing is an effective method of accurate prevention and control and a key measure to block the spread of the epidemic. However, the fraud in nucleic acid testing occurred frequently during epidemics. This paper aims to provide a viable scheme for the government to strengthen the supervision of nucleic acid testing and to provide a new condition for the punishment for the negative act of the government and the upper limit of the reward for nucleic acid testing institution of no data fraud.

Design/methodology/approach

This paper formulates an evolutionary game model between the government and nucleic acid testing institution under four different mechanisms of reward and punishment to solve the issue of nucleic acid testing supervision. The authors discuss the stability of equilibrium points under the four distinct strategies and conduct simulation experiments.

Findings

The authors find that the strategy of dynamic reward and static penalty outperforms the strategies of static reward and static penalty, dynamic reward and static penalty, static reward and dynamic penalty, dynamic reward and dynamic penalty. The results reveal the appropriate punishment for the negative act of the government can enhance the positivity of the government's supervision in the strategy of dynamic reward and static penalty, while the upper limit of the reward for nucleic acid testing institution of no data fraud cannot be too high. Otherwise, it will backfire. Another interesting and counterintuitive result is that in the strategy of dynamic reward and dynamic penalty, the upper limit of the penalty for data fraud of nucleic acid testing institution cannot be augmented recklessly. Otherwise, it will diminish the government's positivity for supervision.

Originality/value

Most of the existing evolutionary game researches related to the reward and punishment mechanism and data fraud merely highlight that increasing the intensity of reward and punishment can help improve the government's supervision initiative and can minimize data fraud of nucleic acid institution, but they fall short of the boundary conditions for the punishment and reward mechanism. Previous literature only study the supervision of nucleic acid testing qualitatively and lacks quantitative research. Moreover, they do not depict the problem scenario of testing data fraud of nucleic acid institution regulated by the government via the evolutionary game model. Thus, this study effectively bridges these gaps. This research is universal and can be extended to other industries.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 12 January 2024

Shanza Maryam Khan and Shahzad Akhtar

The study investigates the impact of competition and concentration on bank risk-taking behavior and stability in the South Asian Association for Regional Cooperation (SAARC…

Abstract

Purpose

The study investigates the impact of competition and concentration on bank risk-taking behavior and stability in the South Asian Association for Regional Cooperation (SAARC) region.

Design/methodology/approach

Data from 100 banks from 2013 to 2021 was analyzed using dynamic and static measures by using dynamic system GMM.

Findings

Results showed that higher competition reduces stability, while concentration in the banking sector produces stability and reduces risk-taking behavior. The findings suggest that regulatory agencies should take different actions based on the degree of banking market concentration to enhance banking sector stability in the SAARC area.

Practical implications

The research helps regulators and decision-makers establish capital requirements at levels that would prevent banks from increasing their risk-taking in order to boost profits and, therefore, reduces hazardous practices that might increase the risk.

Originality/value

The research helps establish capital requirements to prevent banks from increasing risk-taking to boost profits and avoid hazardous practices that could increase nonperforming loans and bank failure risks.

Details

Journal of Economic and Administrative Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1026-4116

Keywords

Article
Publication date: 14 September 2023

Wei Jiang, Ray C. Chang, Ning Yang and Ying Xu

The purpose of this paper is to present a comparative study of flight circumstances, dynamic stability characteristics and controllability for two transport aircraft in severe…

Abstract

Purpose

The purpose of this paper is to present a comparative study of flight circumstances, dynamic stability characteristics and controllability for two transport aircraft in severe atmospheric turbulence at transonic cruise flight for the purpose to obtain the prevention concepts of injuries to passengers and crew members for pilot training in International Air Transport Association (IATA) – Loss of Control In-flight (LOC-I) program.

Design/methodology/approach

A twin-jet and a four-jet transport aircraft encountering severe atmospheric turbulence are the study cases for this paper. The nonlinear unsteady aerodynamic models are established through flight data mining and the fuzzy-logic modeling technique based on the flight data of flight data recorder. This method can be adopted to examine the influence of horizontal wind shear and crosswind on loss of control, dynamic stability characteristics and controllability for transport aircraft in different weights and different sizes in tracking aviation safety of existing different types of aircraft.

Findings

The horizontal wind shear or crosswind before the turbulence encounter will easily induce rolling motion and then initiate the sudden plunging motion during the turbulence encounter. The roll rate will increase the oscillatory rolling motion during plunging motion, if the rolling damping is insufficient. The drop-off altitude will be enlarged by the oscillatory rolling motion during the sudden plunging motion.

Research limitations/implications

A lack of the measurement data of vertical wind speed sensor on board to verify the estimated values of damping term is one of the research limitations for this study. The fact or condition of being severe in sudden plunging motion can be judged through the analysis of oscillatory derivatives with both dynamic stability and damping terms.

Practical implications

The roll rate will increase the oscillatory rolling motion during plunging motion, if the rolling damping is insufficient. The drop-off altitude will be enlarged by the oscillatory rolling motion during the sudden plunging motion. The horizontal wind shear or crosswind before the turbulence encounter will easily induce rolling motion and then initiated the sudden plunging motion during the turbulence encounter. If the drift angle is large, to turn off the autopilot of yaw control first and stabilize the rudder by the pedal. When passing through the atmosphere turbulence area, the pilots do not need to amend the heading angle urgently.

Social implications

The flight safety prevention in avoidance of injuries for passengers and cabin crews is essential for the airlines. The horizontal wind shear or crosswind before the turbulence encounter will easily induce rolling motion and then initiated the sudden plunging motion during the turbulence encounter.

Originality/value

The flight safety prevention in avoidance of injuries for passengers and cabin crews is essential. The present assessment method is an innovation to examine the loss of control problems of aviation safety and promote the understanding of aerodynamic responses of the jet transport aircraft. It is expected to provide a valuable lecture for the international training courses for IATA – LOC-I program after this paper is being published.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 December 2023

Sanyam Sharma and Rajiv Verma

This study aims to investigate the stability performance of partial journal bearings of 120° and 180° partial angles with micropolar lubricant.

Abstract

Purpose

This study aims to investigate the stability performance of partial journal bearings of 120° and 180° partial angles with micropolar lubricant.

Design/methodology/approach

To investigate the stability characteristics of partial journal bearing, a MATLAB source code is written. To solve the Reynolds’ equation, the finite element method is used. Stability performances of 120° and 180° partial journal bearings are computed for a wide range of non-dimensional micropolar fluid parameters and working eccentricities.

Findings

The presented results provide design data for stability parameters in terms of equivalent stiffness, whirl frequency ratio, critical mass and threshold speed of the rotor with respect to eccentricities and material size of the lubricant. The stability of 180° partial journal bearing is found to be higher than 120° partial journal bearing.

Originality/value

In open literature, it is rare to find the stability of a partial journal bearing lubricated with micropolar fluid. Very few researchers have studied the combined effect of eccentricities and micropolar lubricant parameters on the dynamic performance of such bearings. Hence, it is important to study the dynamic stability to explore the complete investigation of the performance of partial journal bearings with micropolar fluid.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 June 2024

Benjamin Faro, Babak Abedin, Dilek Cetindamar and Farhad Daneshgar

The research aims to understand the co-existence of nimbleness and resilience in a continuous digital transformation, along with the dynamic capabilities needed to balance the…

Abstract

Purpose

The research aims to understand the co-existence of nimbleness and resilience in a continuous digital transformation, along with the dynamic capabilities needed to balance the challenges of their co-existence.

Design/methodology/approach

The current study draws on dialogical action design research (D-ADR) to investigate interactions among practitioners and executives. Data are collected from a major Australian financial services organisation (FSO) and many international experts.

Findings

The study presents a framework, the continuous transformation model (CTM), to describe digital transformation within an FSO context, emphasising nimbleness and resilience as its foundational pillars. This framework facilitates the identification of the critical role of organisational capabilities in managing continuous digital transformation, supported by dynamic IT capabilities. More importantly, the findings underscore how these capabilities enable managers to effectively balance the coexistence of nimbleness and resilience.

Research limitations/implications

The CTM contributes to the enterprise information systems literature by offering a coherent understanding of balancing resilience and nimbleness to succeed in digital transformation. In particular, the research model elucidates the relationship between dynamic capabilities and continuous digital transformations.

Practical implications

Digital transformations are not a one-off exercise. Managers in the FSO context must cultivate their organisational capabilities to achieve nimbleness and resilience during their digital transformation journey.

Originality/value

The relationship between dynamic capabilities and continuous digital transformation sheds light on establishing successful management processes within FSOs.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 10 June 2024

Xinghong Wang, Qiang Bian, Xinhua Gao, Chunjiang Zhao, Minghui Liu, Xinghui Xie and Bowen Jiao

The purpose of this paper is to establish a dynamic model considering the actual operating conditions of the train and to study the dynamic performance and vibration…

Abstract

Purpose

The purpose of this paper is to establish a dynamic model considering the actual operating conditions of the train and to study the dynamic performance and vibration characteristics of axle box bearings under different operating conditions.

Design/methodology/approach

In this paper, based on the internal contact characteristics of double-row tapered roller bearings, a dynamic model considering the actual operating conditions of the train is established. The correctness of the model is verified by the vibration test of the bearing. Comparative analysis was conducted on the effects of axial force, radial force and rotational speed on the angular velocity of the cage, slip rate and vibration acceleration level of the inner ring.

Findings

As the force increases, the slip rate of the cages on both sides decreases, and the vibration acceleration level of the inner ring increases. With the increase of rotational speed, the cage slip rate of the axle box bearing increases and the vibration acceleration level of the inner ring increases.

Originality/value

A dynamic model is established considering the actual operating conditions, and the dynamic performance and vibration characteristics of the axle box bearing under different operating conditions are analyzed by numerical method. The research content can provide reference for the parameter design of high-speed railway bearings.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0085/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 5000