Search results

1 – 10 of 549
Article
Publication date: 19 September 2023

Hongfei Zhu, Xiekui Zhang and Baocheng Yu

This study aims to investigate whether the increasing robot adoption will affect employment rate and wages to contribute to the economic cycle and sustainable development in the…

Abstract

Purpose

This study aims to investigate whether the increasing robot adoption will affect employment rate and wages to contribute to the economic cycle and sustainable development in the world.

Design/methodology/approach

The authors introduce a two-way fixed effect model and ordinary least-squares (OLS) model to evaluate the influence based on relevant data of the eighteen countries with the largest robot stocks and robot densities in the world from 2006 to 2019 to test the influences and do the robustness test and endogeneity test by using empirical models.

Findings

The authors’ research findings suggest that increasing robot adoption can cause strong negative impacts on employment for both males and females in these economies. Second, the effect of robots on reducing job opportunities has penetrated different industries. It means that this negative impact of robots is comprehensive for the industry. Third, robot adoption can have a strong positive influence on wages and increase workers' incomes.

Research limitations/implications

The limitations of the study are that the influence of industrial intelligence technologies on the circular economy is diversities in different countries. Thus, this study should consider the development levels of different economies to do additional confirmatory studies.

Practical implications

This study makes out the correlations between industrial robots and the employment market from the circular economy perspective. The result proves the existence of this influence relationship, and the authors propose some suggestions to promote sustainable economic development.

Social implications

This paper addresses the activity of industrial intelligence technologies in the labor market. The employment market is an important part of the circular economy, and it will benefit social development if the government provides appropriate guidance for social investment and industrial layout.

Originality/value

This study is one of the few studies which considered the impact of industrial robots on employment and wages from the perspective of different industries, and this is very important for the circular economy in the world. The results of this paper provide an instructive reference for government policymakers and other countries to stabilize the labor market and optimize human resources for sustainable economic development.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 27 October 2023

Huijie Zhong, Xinran Zhang, Kam C. Chan and Chao Yan

Robots are widely used in industrial manufacturing and service industries around the world. However, most of the previous studies on industrial robots use data at the national or…

Abstract

Purpose

Robots are widely used in industrial manufacturing and service industries around the world. However, most of the previous studies on industrial robots use data at the national or industry level in the context of developed countries. This study examines the impact of imported industrial robots on firm innovation at the firm level in China.

Design/methodology/approach

Drawing on a large dataset of more than three million records in China, including non-publicly traded small and medium firms, the authors adopt a difference-in-differences method to investigate the impact and channels of industrial robots on firm innovation.

Findings

The authors find that the application of industrial robots increases firm innovation. Two possible channels are identified through which robots promote innovation: alleviation of financial constraints and the improvement of human capital. Further analysis shows that the effect of robots on innovation is more pronounced for firms that are highly dependent on external financing, belong to high-tech industries, import high-end robots, have insufficient supply of skilled labor and private firms (non-SOEs). The authors also find that industrial robots increase the firms' innovation quality and the marginal contribution of innovation to firms' total factor productivity.

Originality/value

This study provides big data evidence of the unintended positive consequences of industrial robots on firm innovation. The results are helpful to clarify the controversy of industrial robots. It also has important implications for government industrial policy making, firm innovation and human resource management.

Details

Journal of Accounting Literature, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-4607

Keywords

Article
Publication date: 4 August 2023

Hong Luo and Huiying Qiao

A new round of technological revolution is impacting various aspects of society. However, the importance of technology adoption in fostering firm innovation is underexplored…

Abstract

Purpose

A new round of technological revolution is impacting various aspects of society. However, the importance of technology adoption in fostering firm innovation is underexplored. Therefore, this study aims to investigate whether robot adoption affects technological innovation and how human capital plays a role in this relationship in the era of circular economy.

Design/methodology/approach

Based on the robot adoption data from the International Federation of Robotics (IFR) and panel data of China's listed manufacturing firms from 2011 to 2020, this study uses regression models to test the impact of industrial robots on firm innovation and the mediating role of human capital.

Findings

The results demonstrate that the adoption of industrial robots can significantly promote high-quality innovation. Specifically, a one-unit increase in the number of robots per 100 employees is associated with a 13.52% increase in the number of invention patent applications in the following year. The mechanism tests show that industrial robots drive firm innovation by accumulating more highly educated workers and allocating more workers to R&D jobs. The findings are more significant for firms in industries with low market concentration, in labor-intensive industries and in regions with a shortage of high-end talent.

Research limitations/implications

Due to data limitations, the sample of this study is limited to listed manufacturing firms, so the impact of industrial robots on promoting innovation may be underestimated. In addition, this study cannot observe the dynamic process of human capital management by firms after adopting robots.

Practical implications

The Chinese government should continue to promote the intelligent upgrading of the manufacturing industry and facilitate the promotion of robots in innovation. This implication can also be applied to developing countries that hope to learn from China's experience. In addition, this study emphasizes the role of human capital in the innovation-promoting process of robots. This highlights the importance of firms to strengthen employee education and training.

Social implications

The adoption of industrial robots has profoundly influenced the production and lifestyle of human society. This study finds that the adoption of robots contributes to firm innovation, which helps people gain a deeper understanding of the positive impacts brought about by industrial intelligence.

Originality/value

By exploring the impact of industrial robots on firm innovation, this study offers crucial evidence at the firm level to comprehend the economic implications of robot adoption based on circular economy and human perspectives. Moreover, this study reveals that human capital is an important factor in how industrial robots affect firm innovation, providing an important complement to previous studies.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 30 April 2024

Omar Malla and Madhavan Shanmugavel

Parallelogram linkages are used to increase the stiffness of manipulators and allow precise control of end-effectors. They help maintain the orientation of connected links when…

Abstract

Purpose

Parallelogram linkages are used to increase the stiffness of manipulators and allow precise control of end-effectors. They help maintain the orientation of connected links when the manipulator changes its position. They are implemented in many palletizing robots connected with binary, ternary and quaternary links through both active and passive joints. This limits the motion of some joints and hence results in relative and negative joint angles when assigning coordinate axes. This study aims to provide a simplified accurate model for manipulators built with parllelogram linkages to ease the kinematics calculations.

Design/methodology/approach

This study introduces a simplified model, replacing each parallelogram linkage with a single (binary) link with an active and a passive joint at the ends. This replacement facilitates countering motion while preserving subsequent link orientations. Validation of kinematics is performed on palletizing manipulators from five different OEMs. The validation of Dobot Magician and ABB IRB1410 was carried out in real time and in their control software. Other robots from ABB, Yaskawa, Kuka and Fanuc were validated using control environments and simulators.

Findings

The proposed model enables the straightforward derivation of forward kinematics and transforms hybrid robots into equivalent serial-link robots. The model demonstrates high accuracy streamlining the derivation of kinematics.

Originality/value

The proposed model facilitates the use of classical methods like the Denavit–Hartenberg procedure with ease. It not only simplifies kinematics derivation but it also helps in robot control and motion planning within the workspace. The approach can also be implemented to simplify the parallelogram linkages of robots with higher degrees of freedom such as the IRB1410.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 May 2024

Zhouxiang Jiang, Shiyuan Chen, Yuchen Zhao, Zhongjie Long, Bao Song and Xiaoqi Tang

In typical model-based calibration, linearization errors are derived inevitably, and non-negligible negative impact will be induced on the identification results if the rotational…

Abstract

Purpose

In typical model-based calibration, linearization errors are derived inevitably, and non-negligible negative impact will be induced on the identification results if the rotational kinematic errors are not small enough or the lengths of links are too long, which is common in the industrial cases. Thus, an accurate two-step kinematic calibration method minimizing the linearization errors is presented for a six-DoF serial robot to improve the calibration accuracy.

Design/methodology/approach

The negative impact of linearization on identification accuracy is minimized by removing the responsible linearized kinematic errors from the complete kinematic error model. Accordingly, the identification results of the dimension-reduced new model are accurate but not complete, so the complete kinematic error model, which achieves high identification accuracy of the rest of the error parameters, is combined with this new model to create a two-step calibration procedure capable of highly accurate identification of all the kinematic errors.

Findings

The proportions of linearization errors in measured pose errors are quantified and found to be non-negligible with the increase of rotational kinematic errors. Thus, negative impacts of linearization errors are analyzed quantitatively in different cases, providing the basis for allowed kinematic errors in the new model. Much more accurate results were obtained by using the new two-step calibration method, according to a comparison with the typical methods.

Originality/value

This new method achieves high accuracy with no compromise on completeness, is easy to operate and is consistent with the typical method because the second step with the new model is conveniently combined without changing the sensors or measurement instrument setup.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 April 2024

Yimei Chen, Yixin Wang, Baoquan Li and Tohru Kamiya

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm…

Abstract

Purpose

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm BP-prediction and reciprocal velocity obstacle (PRVO) combines the BP neural network for velocity PRVO to accomplish dynamic collision avoidance.

Design/methodology/approach

This presented method exhibits innovation by anticipating ahead velocities using BP neural networks to reconstruct the velocity obstacle region; determining the optimized velocity corresponding to the robot’s scalable radius range from the error generated by the non-holonomic robot tracking the desired trajectory; and considering acceleration constraints, determining the set of multi-step reachable velocities of non-holonomic robot in the space of velocity variations.

Findings

The method is validated using three commonly used metrics of collision rate, travel time and average distance in a comparison between simulation experiments including multiple differential drive robots and physical experiments using the Turtkebot3 robot. The experimental results show that our method outperforms other RVO extension methods on the three metrics.

Originality/value

In this paper, the authors propose navigation algorithms capable of adaptively selecting the optimal speed for a multi-robot system to avoid robot collisions during dynamic crowded interactions.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 28 March 2023

Kumar Madhan, Shameem Shagirbasha, Tanmaya Kumar Mishra and Juman Iqbal

The aim of this study is to examine the existing literature on service robots in order to identify prominent themes, assess the present state of service robotics research and…

1660

Abstract

Purpose

The aim of this study is to examine the existing literature on service robots in order to identify prominent themes, assess the present state of service robotics research and highlight the contributions of seminal publications in the business, management and hospitality domain.

Design/methodology/approach

This study analysed 332 Scopus papers from 1985 to 2022 using bibliometric techniques like citation and co-citation analysis.

Findings

The study findings highlighted that there has been a consistent rise in publications related to service robots. The paper identifies three significant themes in the service robot literature: adoption of service robots in the context of customer service, anthropomorphism and integration of artificial intelligence in robotic service. Furthermore, this study highlights prominent authors, journals, institutions and countries associated with research on service robots and discusses the future research opportunities in this domain.

Originality/value

This study contributes to the service robots’ literature in the hospitality context by compilation of various reference materials using a comprehensive bibliometric analysis. Previous studies do not point out crucial themes in this area, nor do they provide an overview of prominent journals, institutions, authors and trends in this field. Therefore, this study attempts to fill the lacunae.

Details

International Hospitality Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2516-8142

Keywords

Article
Publication date: 17 April 2024

Xiaoyu Wan and Haodi Chen

Explore how the degree of humanization affects user misconduct, and provide effective misconduct prevention measures for the wide application of artificial intelligence in the…

Abstract

Purpose

Explore how the degree of humanization affects user misconduct, and provide effective misconduct prevention measures for the wide application of artificial intelligence in the future.

Design/methodology/approach

Based on the “Uncanny Valley theory”, three experiments were conducted to explore the relationship between the degree of humanization of service machines and user misbehavior, and to analyze the mediating role of cognitive resistance and the moderating role of social class.

Findings

There is a U-shaped relationship between the degree of humanization of service machines and user misbehavior; Social class not only regulates the main effect of anthropomorphism on misbehavior, but also regulates the intermediary effect of anthropomorphism on cognitive resistance, thus affecting misbehavior.

Research limitations/implications

The design of the service robot can be from the user’s point of view, combined with the user’s social class, match different user types, and provide the same preferences as the user’s humanoid service robot.

Practical implications

This study is an important reference value for enterprises and governments to provide intelligent services in public places. It can prevent the robot from being vandalized and also provide users with a comfortable human-computer interaction experience, expanding the positive effects of providing smart services by government and enterprises.

Social implications

This study avoids and reduces users' misbehavior towards intelligent service robots, improves users' satisfaction in using service robots, and avoids service robots being damaged, resulting in waste of government, enterprise and social resources.

Originality/value

From the perspective of product factors to identify the inducing factors of improper behavior, from the perspective of social class of users to analyze the moderating effect of humanization degree and user improper behavior.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 3 May 2024

Dong Huan Shen, Shuai Guo, Hao Duan, Kehao Ji and Haili Jiang

The paper focuses on the issue of manual rebar-binding tasks in the construction industry, which are marked by high labor intensity, high costs and inefficient operations. The…

Abstract

Purpose

The paper focuses on the issue of manual rebar-binding tasks in the construction industry, which are marked by high labor intensity, high costs and inefficient operations. The rebar-binding robots that are currently available are not fully mature. Most of them can only bind one or two nodes in one position, which leads to significant time wastage in movement. Based on a new type of rebar-binding robot, this paper aims to propose a new movement and binding control that reduces manpower and enhances efficiency.

Design/methodology/approach

The robot is combined with photoelectric sensors, travel switches and other sensors. It is supposed to move accurately and run in a limited area on the rebar mesh through logical judgment, speed control and position control. Machine vision is used by the robot to locate the rebar nodes and then adjusts the binding-gun position to ensure that multiple rebar nodes are bound sequentially.

Findings

By moving on the rebar mesh with accuracy, the robot meets the positioning accuracy requirements of the binding module, with experimental testing accuracy within 5 mm. Furthermore, its ability to bind four rebar nodes in one place results in a high efficiency and a binding effect that meets building standards.

Originality/value

The innovative design of the robot can adapt itself to the rebar mesh, move accurately to the target position and bind four nodes at that position, which reduces the number of movements on the mesh. Repetitive and heavy rebar-binding tasks can be efficiently completed by the robot, which saves human resources, reduces worker labor intensity and reduces construction overhead. It provides a more feasible and practical solution for using robots to bind rebar nodes.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 September 2023

Mariam Moufaddal, Asmaa Benghabrit and Imane Bouhaddou

The health crisis has highlighted the shortcomings of the industry sector which has revealed its vulnerability. To date, there is no guarantee of a return to the “world before”…

Abstract

Purpose

The health crisis has highlighted the shortcomings of the industry sector which has revealed its vulnerability. To date, there is no guarantee of a return to the “world before”. The ability of companies to cope with these changes is a key competitive advantage requiring the adoption/mastery of industry 4.0 technologies. Therefore, companies must adapt their business processes to fit into similar situations.

Design/methodology/approach

The proposed methodology comprises three steps. First, a comparative analysis of the existing CPSs is elaborated. Second, following this analysis, a deep learning driven CPS framework is proposed highlighting its components and tiers. Third, a real industrial case is presented to demonstrate the application of the envisioned framework. Deep learning network-based methods of object detection are used to train the model and evaluation is assessed accordingly.

Findings

The analysis revealed that most of the existing CPS frameworks address manufacturing related subjects. This illustrates the need for a resilient industrial CPS targeting other areas and considering CPSs as loopback systems preserving human–machine interaction, endowed with data tiering approach for easy and fast data access and embedded with deep learning-based computer vision processing methods.

Originality/value

This study provides insights about what needs to be addressed in terms of challenges faced due to unforeseen situations or adapting to new ones. In this paper, the CPS framework was used as a monitoring system in compliance with the precautionary measures (social distancing) and for self-protection with wearing the necessary equipments. Nevertheless, the proposed framework can be used and adapted to any industrial or non-industrial environments by adjusting object detection purpose.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 549