Search results

1 – 10 of over 1000
Article
Publication date: 8 September 2023

Önder Halis Bettemir and M. Talat Birgonul

Exact solution of time–cost trade-off problem (TCTP) by the state-of-the-art meta-heuristic algorithms can be obtained for small- and medium-scale problems, while satisfactory…

Abstract

Purpose

Exact solution of time–cost trade-off problem (TCTP) by the state-of-the-art meta-heuristic algorithms can be obtained for small- and medium-scale problems, while satisfactory results cannot be obtained for large construction projects. In this study, a hybrid heuristic meta-heuristic algorithm that adapts the search domain is developed to solve the large-scale discrete TCTP more efficiently.

Design/methodology/approach

Minimum cost slope–based heuristic network analysis algorithm (NAA), which eliminates the unfeasible search domain, is embedded into differential evolution meta-heuristic algorithm. Heuristic NAA narrows the search domain at the initial phase of the optimization. Moreover, activities with float durations higher than the predetermined threshold value are eliminated and then the meta-heuristic algorithm starts and searches the global optimum through the narrowed search space. However, narrowing the search space may increase the probability of obtaining a local optimum. Therefore, adaptive search domain approach is employed to make reintroduction of the eliminated activities to the design variable set possible, which reduces the possibility of converging into local minima.

Findings

The developed algorithm is compared with plain meta-heuristic algorithm with two separate analyses. In the first analysis, both algorithms have the same computational demand, and in the latter analysis, the meta-heuristic algorithm has fivefold computational demand. The tests on case study problems reveal that the developed algorithm presents lower total project costs according to the dependent t-test for paired samples with α = 0.0005.

Research limitations/implications

In this study, TCTP is solved without considering quality or restrictions on the resources.

Originality/value

The proposed method enables to adapt the number of parameters, that is, the search domain and provides the opportunity of obtaining significant improvements on the meta-heuristic algorithms for other engineering optimization problems, which is the theoretical contribution of this study. The proposed approach reduces the total construction cost of the large-scale projects, which can be the practical benefit of this study.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 3 February 2023

M. Iadh Ayari and Sabri T.M. Thabet

This paper aims to study qualitative properties and approximate solutions of a thermostat dynamics system with three-point boundary value conditions involving a nonsingular kernel…

Abstract

Purpose

This paper aims to study qualitative properties and approximate solutions of a thermostat dynamics system with three-point boundary value conditions involving a nonsingular kernel operator which is called Atangana-Baleanu-Caputo (ABC) derivative for the first time. The results of the existence and uniqueness of the solution for such a system are investigated with minimum hypotheses by employing Banach and Schauder's fixed point theorems. Furthermore, Ulam-Hyers (UH) stability, Ulam-Hyers-Rassias UHR stability and their generalizations are discussed by using some topics concerning the nonlinear functional analysis. An efficiency of Adomian decomposition method (ADM) is established in order to estimate approximate solutions of our problem and convergence theorem is proved. Finally, four examples are exhibited to illustrate the validity of the theoretical and numerical results.

Design/methodology/approach

This paper considered theoretical and numerical methodologies.

Findings

This paper contains the following findings: (1) Thermostat fractional dynamics system is studied under ABC operator. (2) Qualitative properties such as existence, uniqueness and Ulam–Hyers–Rassias stability are established by fixed point theorems and nonlinear analysis topics. (3) Approximate solution of the problem is investigated by Adomain decomposition method. (4) Convergence analysis of ADM is proved. (5) Examples are provided to illustrate theoretical and numerical results. (6) Numerical results are compared with exact solution in tables and figures.

Originality/value

The novelty and contributions of this paper is to use a nonsingular kernel operator for the first time in order to study the qualitative properties and approximate solution of a thermostat dynamics system.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 13 May 2024

Vu Hong Son Pham, Nghiep Trinh Nguyen Dang and Nguyen Van Nam

For successful management of construction projects, a precise analysis of the balance between time and cost is imperative to attain the most effective results. The aim of this…

Abstract

Purpose

For successful management of construction projects, a precise analysis of the balance between time and cost is imperative to attain the most effective results. The aim of this study is to present an innovative approach tailored to tackle the challenges posed by time-cost trade-off (TCTO) problems. This objective is achieved through the integration of the multi-verse optimizer (MVO) with opposition-based learning (OBL), thereby introducing a groundbreaking methodology in the field.

Design/methodology/approach

The paper aims to develop a new hybrid meta-heuristic algorithm. This is achieved by integrating the MVO with OBL, thereby forming the iMVO algorithm. The integration enhances the optimization capabilities of the algorithm, notably in terms of exploration and exploitation. Consequently, this results in expedited convergence and yields more accurate solutions. The efficacy of the iMVO algorithm will be evaluated through its application to four different TCTO problems. These problems vary in scale – small, medium and large – and include real-life case studies that possess complex relationships.

Findings

The efficacy of the proposed methodology is evaluated by examining TCTO problems, encompassing 18, 29, 69 and 290 activities, respectively. Results indicate that the iMVO provides competitive solutions for TCTO problems in construction projects. It is observed that the algorithm surpasses previous algorithms in terms of both mean deviation percentage (MD) and average running time (ART).

Originality/value

This research represents a significant advancement in the field of meta-heuristic algorithms, particularly in their application to managing TCTO in construction projects. It is noteworthy for being among the few studies that integrate the MVO with OBL for the management of TCTO in construction projects characterized by complex relationships.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 14 June 2024

Yaser Sadati-Keneti, Mohammad Vahid Sebt, Reza Tavakkoli-Moghaddam, Armand Baboli and Misagh Rahbari

Although the previous generations of the Industrial Revolution have brought many advantages to human life, scientists have been looking for a substantial breakthrough in creating…

Abstract

Purpose

Although the previous generations of the Industrial Revolution have brought many advantages to human life, scientists have been looking for a substantial breakthrough in creating technologies that can improve the quality of human life. Nowadays, we can make our factories smarter using new concepts and tools like real-time self-optimization. This study aims to take a step towards implementing key features of smart manufacturing including  preventive self-maintenance, self-scheduling and real-time decision-making.

Design/methodology/approach

A new bi-objective mathematical model based on Industry 4.0 to schedule received customer orders, which minimizes both the total earliness and tardiness of orders and the probability of machine failure in smart manufacturing, was presented. Moreover, four meta-heuristics, namely, the multi-objective Archimedes optimization algorithm (MOAOA), NSGA-III, multi-objective simulated annealing (MOSA) and hybrid multi-objective Archimedes optimization algorithm and non-dominated sorting genetic algorithm-III (HMOAOANSGA-III) were implemented to solve the problem. To compare the performance of meta-heuristics, some examples and metrics were presumed and solved by using the algorithms, and the performance and validation of meta-heuristics were analyzed.

Findings

The results of the procedure and a mathematical model based on Industry 4.0 policies showed that a machine performed the self-optimizing process of production scheduling and followed a preventive self-maintenance policy in real-time situations. The results of TOPSIS showed that the performances of the HMOAOANSGA-III were better in most problems. Moreover, the performance of the MOSA outweighed the performance of the MOAOA, NSGA-III and HMOAOANSGA-III if we only considered the computational times of algorithms. However, the convergence of solutions associated with the MOAOA and HMOAOANSGA-III was better than those of the NSGA-III and MOSA.

Originality/value

In this study, a scheduling model considering a kind of Industry 4.0 policy was defined, and a novel approach was presented, thereby performing the preventive self-maintenance and self-scheduling by every single machine. This new approach was introduced to integrate the order scheduling system using a real-time decision-making method. A new multi-objective meta-heuristic algorithm, namely, HMOAOANSGA-III, was proposed. Moreover, the crowding-distance-quality-based approach was presented to identify the best solution from the frontier, and in addition to improving the crowding-distance approach, the quality of the solutions was also considered.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 6 May 2024

Andreas Gschwentner, Manfred Kaltenbacher, Barbara Kaltenbacher and Klaus Roppert

Performing accurate numerical simulations of electrical drives, the precise knowledge of the local magnetic material properties is of utmost importance. Due to the various…

Abstract

Purpose

Performing accurate numerical simulations of electrical drives, the precise knowledge of the local magnetic material properties is of utmost importance. Due to the various manufacturing steps, e.g. heat treatment or cutting techniques, the magnetic material properties can strongly vary locally, and the assumption of homogenized global material parameters is no longer feasible. This paper aims to present the general methodology and two different solution strategies for determining the local magnetic material properties using reference and simulation data.

Design/methodology/approach

The general methodology combines methods based on measurement, numerical simulation and solving an inverse problem. Therefore, a sensor-actuator system is used to characterize electrical steel sheets locally. Based on the measurement data and results from the finite element simulation, the inverse problem is solved with two different solution strategies. The first one is a quasi Newton method (QNM) using Broyden's update formula to approximate the Jacobian and the second is an adjoint method. For comparison of both methods regarding convergence and efficiency, an artificial example with a linear material model is considered.

Findings

The QNM and the adjoint method show similar convergence behavior for two different cutting-edge effects. Furthermore, considering a priori information improved the convergence rate. However, no impact on the stability and the remaining error is observed.

Originality/value

The presented methodology enables a fast and simple determination of the local magnetic material properties of electrical steel sheets without the need for a large number of samples or special preparation procedures.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 July 2021

Subhrapratim Nath, Jamuna Kanta Sing and Subir Kumar Sarkar

Advancement in optimization of VLSI circuits involves reduction in chip size from micrometer to nanometer level as well as fabrication of a billions of transistors in a single die…

Abstract

Purpose

Advancement in optimization of VLSI circuits involves reduction in chip size from micrometer to nanometer level as well as fabrication of a billions of transistors in a single die where global routing problem remains significant with a trade-off of power dissipation and interconnect delay. This paper aims to solve the increased complexity in VLSI chip by minimization of the wire length in VLSI circuits using a new approach based on nature-inspired meta-heuristic, invasive weed optimization (IWO). Further, this paper aims to achieve maximum circuit optimization using IWO hybridized with particle swarm optimization (PSO).

Design/methodology/approach

This paper projects the complexities of global routing process of VLSI circuit design in mapping it with a well-known NP-complete problem, the minimum rectilinear Steiner tree (MRST) problem. IWO meta-heuristic algorithm is proposed to meet the MRST problem more efficiently and thereby reducing the overall wire-length of interconnected nodes. Further, the proposed approach is hybridized with PSO, and a comparative analysis is performed with geosteiner 5.0.1 and existing PSO technique over minimization, consistency and convergence against available benchmark.

Findings

This paper provides high performance–enhanced IWO algorithm, which keeps in generating low MRST value, thereby successful wire length reduction of VLSI circuits is significantly achieved as evident from the experimental results as compared to PSO algorithm and also generates value nearer to geosteiner 5.0.1 benchmark. Even with big VLSI instances, hybrid IWO with PSO establishes its robustness over achieving improved optimization of overall wire length of VLSI circuits.

Practical implications

This paper includes implications in the areas of optimization of VLSI circuit design specifically in the arena of VLSI routing and the recent developments in routing optimization using meta-heuristic algorithms.

Originality/value

This paper fulfills an identified need to study optimization of VLSI circuits where minimization of overall interconnected wire length in global routing plays a significant role. Use of nature-based meta-heuristics in solving the global routing problem is projected to be an alternative approach other than conventional method.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 16 May 2024

Axel Buck and Christian Mundt

Reynolds-averaged Navier–Stokes (RANS) models often perform poorly in shock/turbulence interaction regions, resulting in excessive wall heat load and incorrect representation of…

Abstract

Purpose

Reynolds-averaged Navier–Stokes (RANS) models often perform poorly in shock/turbulence interaction regions, resulting in excessive wall heat load and incorrect representation of the separation length in shockwave/turbulent boundary layer interactions. The authors suggest that this can be traced back to inadequate numerical treatment of the inviscid fluxes. The purpose of this study is an extension to the well-known Harten, Lax, van Leer, Einfeldt (HLLE) Riemann solver to overcome this issue.

Design/methodology/approach

It explicitly takes into account the broadening of waves due to the averaging procedure, which adds numerical dissipation and reduces excessive turbulence production across shocks. The scheme is derived based on the HLLE equations, and it is tested against three numerical experiments.

Findings

Sod’s shock tube case shows that the scheme succeeds in reducing turbulence amplification across shocks. A shock-free turbulent flat plate boundary layer indicates that smooth flow at moderate turbulence intensity is largely unaffected by the scheme. A shock/turbulent boundary layer interaction case with higher turbulence intensity shows that the added numerical dissipation can, however, impair the wall heat flux distribution.

Originality/value

The proposed scheme is motivated by implicit large eddy simulations that use numerical dissipation as subgrid-scale model. Introducing physical aspects of turbulence into the numerical treatment for RANS simulations is a novel approach.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2023

Johnny Kwok Wai Wong, Fateme Bameri, Alireza Ahmadian Fard Fini and Mojtaba Maghrebi

Accurate and rapid tracking and counting of building materials are crucial in managing on-site construction processes and evaluating their progress. Such processes are typically…

Abstract

Purpose

Accurate and rapid tracking and counting of building materials are crucial in managing on-site construction processes and evaluating their progress. Such processes are typically conducted by visual inspection, making them time-consuming and error prone. This paper aims to propose a video-based deep-learning approach to the automated detection and counting of building materials.

Design/methodology/approach

A framework for accurately counting building materials at indoor construction sites with low light levels was developed using state-of-the-art deep learning methods. An existing object-detection model, the You Only Look Once version 4 (YOLO v4) algorithm, was adapted to achieve rapid convergence and accurate detection of materials and site operatives. Then, DenseNet was deployed to recognise these objects. Finally, a material-counting module based on morphology operations and the Hough transform was applied to automatically count stacks of building materials.

Findings

The proposed approach was tested by counting site operatives and stacks of elevated floor tiles in video footage from a real indoor construction site. The proposed YOLO v4 object-detection system provided higher average accuracy within a shorter time than the traditional YOLO v4 approach.

Originality/value

The proposed framework makes it feasible to separately monitor stockpiled, installed and waste materials in low-light construction environments. The improved YOLO v4 detection method is superior to the current YOLO v4 approach and advances the existing object detection algorithm. This framework can potentially reduce the time required to track construction progress and count materials, thereby increasing the efficiency of work-in-progress evaluation. It also exhibits great potential for developing a more reliable system for monitoring construction materials and activities.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 27 February 2024

Jianhua Zhang, Liangchen Li, Fredrick Ahenkora Boamah, Dandan Wen, Jiake Li and Dandan Guo

Traditional case-adaptation methods have poor accuracy, low efficiency and limited applicability, which cannot meet the needs of knowledge users. To address the shortcomings of…

Abstract

Purpose

Traditional case-adaptation methods have poor accuracy, low efficiency and limited applicability, which cannot meet the needs of knowledge users. To address the shortcomings of the existing research in the industry, this paper proposes a case-adaptation optimization algorithm to support the effective application of tacit knowledge resources.

Design/methodology/approach

The attribute simplification algorithm based on the forward search strategy in the neighborhood decision information system is implemented to realize the vertical dimensionality reduction of the case base, and the fuzzy C-mean (FCM) clustering algorithm based on the simulated annealing genetic algorithm (SAGA) is implemented to compress the case base horizontally with multiple decision classes. Then, the subspace K-nearest neighbors (KNN) algorithm is used to induce the decision rules for the set of adapted cases to complete the optimization of the adaptation model.

Findings

The findings suggest the rapid enrichment of data, information and tacit knowledge in the field of practice has led to low efficiency and low utilization of knowledge dissemination, and this algorithm can effectively alleviate the problems of users falling into “knowledge disorientation” in the era of the knowledge economy.

Practical implications

This study provides a model with case knowledge that meets users’ needs, thereby effectively improving the application of the tacit knowledge in the explicit case base and the problem-solving efficiency of knowledge users.

Social implications

The adaptation model can serve as a stable and efficient prediction model to make predictions for the effects of the many logistics and e-commerce enterprises' plans.

Originality/value

This study designs a multi-decision class case-adaptation optimization study based on forward attribute selection strategy-neighborhood rough sets (FASS-NRS) and simulated annealing genetic algorithm-fuzzy C-means (SAGA-FCM) for tacit knowledgeable exogenous cases. By effectively organizing and adjusting tacit knowledge resources, knowledge service organizations can maintain their competitive advantages. The algorithm models established in this study develop theoretical directions for a multi-decision class case-adaptation optimization study of tacit knowledge.

Details

Journal of Advances in Management Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 31 May 2024

C. Sivapriya and G. Subbaiyan

This proposal aims to forecast energy consumption in residential buildings based on the effect of opening and closing windows by the deep architecture approach. In this task, the…

Abstract

Purpose

This proposal aims to forecast energy consumption in residential buildings based on the effect of opening and closing windows by the deep architecture approach. In this task, the developed model has three stages: (1) collection of data, (2) feature extraction and (3) prediction. Initially, the data for the closing and opening frequency of the window are taken from the manually collected datasets. After that, the weighted feature extraction is performed in the collected data. The attained weighted feature is fed to predict energy consumption. The prediction uses the efficient hybrid multi-scale convolution networks (EHMSCN), where two deep structured architectures like a deep temporal context network and one-dimensional deep convolutional neural network. Here, the parameter optimization takes place with the hybrid algorithm named jumping rate-based grasshopper lemur optimization (JR-GLO). The core aim of this energy consumption model is to predict the consumption of energy accurately based on the effect of opening and closing windows. Therefore, the offered energy consumption prediction approach is analyzed over various measures and attains an accurate performance rate than the conventional techniques.

Design/methodology/approach

An EHMSCN-aided energy consumption prediction model is developed to forecast the amount of energy usage during the opening and closing of windows accurately. The emission of CO2 in indoor spaces is highly reduced.

Findings

The MASE measure of the proposed model was 52.55, 43.83, 42.01 and 36.81% higher than ANN, CNN, DTCN and 1DCNN.

Originality/value

The findings of the suggested model in residences were attained high-quality measures with high accuracy, precision and variance.

1 – 10 of over 1000