Search results

1 – 3 of 3
Article
Publication date: 13 June 2024

Hamza Sayyou, Jabrane Belabid, Hakan F. Öztop and Karam Allali

The purpose of this paper is to investigate the effects of gravitational modulation on natural convection in a square inclined porous cavity filled by a fluid containing copper…

Abstract

Purpose

The purpose of this paper is to investigate the effects of gravitational modulation on natural convection in a square inclined porous cavity filled by a fluid containing copper nanoparticles.

Design/methodology/approach

The present study uses a system of equations that couple hydrodynamics to heat transfer, representing the governing equations of fluid flow in a square domain. The Boussinesq–Darcy flow with Cu-water nanofluid is considered. The dimensionless partial differential equations are solved numerically using finite difference method based on alternating direction implicit scheme. The cavity is differentially heated by constant heat flux, while the top and bottom walls are insulated. The authors examined the effects of gravity amplitude (λ), vibration frequency (σ), tilt angle (α) and Rayleigh number (Ra) on flow and temperature.

Findings

The numerical simulations, in the form of streamlines, isotherms, Nusselt number and maximum stream function for different values of amplitude, frequency, tilt angle and Rayleigh number, have revealed an oscillatory behavior in the development of flow and temperature under gravity modulation. An increase of amplitude from 0.5 to 1 intensifies the flow stream (from |ψmax| = 21.415 to |ψmax| = 25.262) and improves heat transfer (from Nu¯ = 17.592 to Nu¯ = 20.421). Low-frequency vibration below 50 has a significant impact on the flow and thermal distributions. However, once this threshold is exceeded, the flow weakens, leading to a gradual decrease in heat transfer rate. The inclination angle is an effective parameter for controlling the flow and temperature characteristics. Thus, transitioning the tilt angle from 30° to 60° can increase the flow velocity (from 22.283 to 23.288) while reducing the Nusselt number (from 16.603 to 13.874). Therefore, by manipulating the combination of vibration and inclination, it is founded that for a fixed frequency value of σ = 100 and for increased amplitude (from 0.5 to 1), the flow intensity at inclination of 60° is boosted, and an increase of the heat transfer rate at inclination of 30° is also observed. Convective thermal instabilities may arise depending on the different key factors.

Originality/value

To the best of the authors’ knowledge, this study is original in its examination of the combined effects of modulated gravity and cavity inclination on free convection in nanofluid porous media. It highlights the crucial roles of these two important factors in influencing flow and heat transfer properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 June 2024

Arooj Tanveer, Sami Ul Haq, Muhammad Bilal Ashraf, Muhammad Usman Ashraf and R. Nawaz

This study aims to numerically investigate heat transport in a trapezoidal cavity using hybrid nanoparticles (Ag-$Al_2O_3$). Unlike previous studies, this one covers…

Abstract

Purpose

This study aims to numerically investigate heat transport in a trapezoidal cavity using hybrid nanoparticles (Ag-$Al_2O_3$). Unlike previous studies, this one covers magnetohydrodynamics, joule heating with viscous dissipation, heat absorption and generation. The left and right sides of the chasm are frigid. The upper wall heats, whereas the bottom wall remains adiabatic.

Design/methodology/approach

After reducing the system of dimensional equations to dimensionless equations, the authors use the Galerkin finite element method to solve them numerically. Geometric parameters affect heating efficiency; thus, the authors use flow metrics such as the Reynold number Re, magnetic parameter M, volume fraction coefficient, heat absorption and Eckert number Ec. The authors use the finite volume method to solve the governing equations after converting them to dimensionless form. The authors also try the artificial neural network method to predict the innovative cavity’s heat response in future scenarios. Transition state charts, regression analysis, MSE and error histograms accelerate, smooth and accurately converge solutions.

Findings

As the magnetic parameter and Eckert number increase, the enclosure emits more heat. As Reynold and volume fraction coefficients rise, the Nusselt number falls. It rose as magnetic, Eckert and heat absorption characteristics increased. The average Nusselt number rises with Reynolds and volume fraction coefficients. The magnetic, Eckert and heat absorption characteristics have inverse values.

Originality/value

This study numerically investigates heat transport in a trapezoidal cavity using hybrid nanoparticles (Ag-$Al_2O_3$). Unlike previous studies, this one covers MHD, joule heating with viscous dissipation, heat absorption and generation. The left and right sides of the chasm are frigid. The upper wall heats, whereas the bottom wall remains adiabatic.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 17 June 2024

Xiaodong Sun, Yuanyuan Liu, Bettina Chocholaty and Steffen Marburg

Prior investigations concerning misalignment resulting from journal deformation typically relied on predefined misaligned angles. Nevertheless, scant attention has been devoted to…

30

Abstract

Purpose

Prior investigations concerning misalignment resulting from journal deformation typically relied on predefined misaligned angles. Nevertheless, scant attention has been devoted to the determination of these misaligned angles. Furthermore, existing studies commonly treat the journal as rigid under such circumstances. Therefore, the present study aims to introduce a framework for determining misaligned angles and to compare outcomes between rigid and flexible journal configurations.

Design/methodology/approach

The bearing forces are considered as an external load leading to journal deformation. This deformation is calculated using the finite element method. The pressure distribution producing the bearing force is solved using the finite difference method. The mesh grids in the finite element and finite difference methods are matched for coupling calculation. By iteration, the pressure distribution of the lubricant film at the equilibrium position is determined.

Findings

Results show that the deformation-induced misalignment has a significant influence on the performance of the bearing when the journal flexibility is taken into account. The parametric study reveals that the misalignment relies on system parameters such as bearing length-diameter ratio and static load.

Originality/value

The investigation of this work provides a quantification method of misalignment of hydrodynamic bearings considering the elastic deformation of the journal, which assists in the design of bearing in a rotor-bearing system.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0337/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Access

Year

Last week (3)

Content type

Earlycite article (3)
1 – 3 of 3