Search results

1 – 5 of 5
Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 4 April 2024

Tassadit Hermime, Abdelghani Seghir and Smail Gabi

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several…

Abstract

Purpose

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several accelerograms.

Design/methodology/approach

Finite element analysis is conducted using the Plaxis 2D software to generate the numerical model of quay wall. The extension of berth 25 at the port of Bejaia, located in northeastern Algeria, represents a case study. Incremental dynamic analyses are carried out to examine variation of the main response parameters under seismic excitations with increasing Peak ground acceleration (PGA) levels. Two global damage indices based on the safety factor and bending moment are introduced to assess the relationship between PGA and the damage levels.

Findings

The results obtained indicate that the sheet pile quay wall can safely withstand seismic loads up to PGAs of 0.35 g and that above 0.45 g, care should be taken with the risk of reaching the ultimate moment capacity of the steel sheet pile. However, for PGAs greater than 0.5 g, it was clearly demonstrated that the excessive deformations with material are likely to occur in the soil layers and in the structural elements.

Originality/value

The main contribution of the present work is a new double seismic damage index for a steel sheet pile supported quay wharf. The numerical modeling is first validated in the static case. Then, the results obtained by performing several incremental dynamic analyses are exploited to evaluate the degradation of the soil safety factor and the seismic capacity of the pile sheet wall. Computed values of the proposed damage indices of the considered quay wharf are a practical helping tool for decision-making regarding the seismic safety of the structure.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 May 2024

Fay Rhianna Claybrook, Darren John Southee and Mazher Mohammed

Cushioning is a useful material property applicable for a range of applications from medical devices to personal protective equipment. The current ability to apply cushioning in a…

Abstract

Purpose

Cushioning is a useful material property applicable for a range of applications from medical devices to personal protective equipment. The current ability to apply cushioning in a product context is limited by the appropriateness of available materials, with polyurethane foams being the current gold standard material. The purpose of this study is to investigate additively manufactured flexible printing of scaffold structures as an alternative.

Design/methodology/approach

In this study, this study investigates triply periodic minimal surface (TPMS) structures, including Gyroid, Diamond and Schwarz P formed in thermoplastic polyurethane (TPU), as a possible alternative. Each TPMS structure was fabricated using material extrusion additive manufacturing and evaluated to ASTM mechanical testing standard for polymers. This study focuses attention to TPMS structures fabricated for a fixed unit cell size of 10 mm and examine the compressive properties for changes in the scaffold porosity for samples fabricated in TPU with a shore hardness of 63A and 90A.

Findings

It was discovered that for increased porosity there was a measured reduction in the load required to deform the scaffold. Additionally, a complex relationship between the shore hardness and the stiffness of a structure. It was highlighted that through the adjustment of porosity, the compressive strength required to deform the scaffolds to a point of densification could be controlled and predicted with high repeatability.

Originality/value

The results indicate the ability to tailor the scaffold design parameters using both 63A and 90A TPU material, to mimic the loading properties of common polyurethane foams. The use of these structures indicates a next generation of tailored cushioning using additive manufacturing techniques by tailoring both geometry and porosity to loading and compressive strengths.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 January 2024

Jingqi Zhang, Shaohua Jiang and Xiaomin Qi

The purpose of this paper is to conduct a comprehensive study on building, fire and evacuation, so as to effectively improve the efficiency of building fire evacuation and the…

Abstract

Purpose

The purpose of this paper is to conduct a comprehensive study on building, fire and evacuation, so as to effectively improve the efficiency of building fire evacuation and the management level of fire evacuation site. Make up for the difficulties of BIM technology in effectively connecting building information and fire data.

Design/methodology/approach

First, this paper establishes a fire model and an evacuation model based on BIM information. Then, the safety index (SI) is introduced as a comprehensive index, and the IRI is established by integrating the SI function to evaluate the safety of evacuation routes. Based on these two indices, the IRI-based fire evacuation model is established.

Findings

This study offers an Improved Risk Index (IRI)-based fire evacuation model, which may achieve effective evacuation in fire scenes. And the model is verified by taking the fire evacuation of a shopping center building as an example.

Originality/value

This paper proposes a fire evacuation principle based on IRI, so that the relevant personnel can comprehensively consider the fire factors and evacuation factors to achieve the optimization of building design, thereby improving the fire safety of buildings.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 31 May 2024

Shikha Pandey, Sumit Gandhi and Yogesh Iyer Murthy

The purpose of this study is to compare the prediction models for half-cell potential (HCP) of RCC slabs cathodically protected using pure magnesium anodes and subjected to…

Abstract

Purpose

The purpose of this study is to compare the prediction models for half-cell potential (HCP) of RCC slabs cathodically protected using pure magnesium anodes and subjected to chloride ingress.The models for HCP using 1,134 data set values based on experimentation are developed and compared using ANFIS, artificial neural network (ANN) and integrated ANN-GA algorithms.

Design/methodology/approach

In this study, RCC slabs, 1000 mm × 1000 mm × 100 mm were cast. Five slabs were cast with 3.5% NaCl by weight of cement, and five more were cast without NaCl. The distance of the point under consideration from the anode in the x- and y-axes, temperature, relative humidity and age of the slab in days were the input parameters, while the HCP values with reference to the Standard Calomel Electrode were the output. Experimental values consisting of 80 HCP values per slab per day were collected for 270 days and were averaged for both cases to generate the prediction model.

Findings

In this study, the premise and consequent parameters are trained, validated and tested using ANFIS, ANN and by using ANN as fitness function of GA. The MAPE, RMSE and MAE of the ANFIS model were 24.57, 1702.601 and 871.762, respectively. Amongst the ANN algorithms, Levenberg−Marquardt (LM) algorithm outperforms the other methods, with an overall R-value of 0.983. GA with ANN as the objective function proves to be the best means for the development of prediction model.

Originality/value

Based on the original experimental values, the performance of ANFIS, ANN and GA with ANN as objective function provides excellent results.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Access

Year

Last 6 months (5)

Content type

Earlycite article (5)
1 – 5 of 5