Search results

1 – 10 of 159
Article
Publication date: 10 April 2024

Yuting Wang, Guodong Sun, Haisheng Wang and Bobo Jian

The purpose of this study is to solve the issues of time-consuming and complicated computation of traditional measures, as well as the underutilization of two-dimensional (2D…

Abstract

Purpose

The purpose of this study is to solve the issues of time-consuming and complicated computation of traditional measures, as well as the underutilization of two-dimensional (2D) phase-trajectory projection matrix, so a new set of features were proposed based on the projection of attractors trajectory to characterize the friction-induced attractors and to reveal the tribological behavior during the running-in process.

Design/methodology/approach

The frictional running-in experiments were conducted by sliding a ball against a static disk, and the friction coefficient was collected to reconstruct the friction-induced attractors. The projection of the attractors in 2D subspace was then mapped and the distribution of phase points was adapted to conduct the feature extraction.

Findings

The evolution of the proposed moment measures could be described as “initial rapid decrease/increase- midterm gradual decrease/increase- finally stable,” which could effectively reveal the convergence degree of the friction-induced attractors. Moreover, the measures could also describe the relative position of the attractors in phase–space domain, which reveal the amplitude evolution of signals to some extent.

Originality/value

The proposed measures could reveal the evolution of tribological behaviors during the running-in process and meet the more precise real-time running-in status identification.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 April 2024

Delin Chen

This study aims to research the influence mechanism of microtextured geometric parameters of dry gas seal end face on the tribological behavior under dry frictional conditions.

Abstract

Purpose

This study aims to research the influence mechanism of microtextured geometric parameters of dry gas seal end face on the tribological behavior under dry frictional conditions.

Design/methodology/approach

The microtexture was processed using laser processing, while the diamond-like carbon (DLC) film was applied through magnetron sputtering; the experimental platform of friction vibration was established, the frictional and vibrational properties of different geometric parameters were tested; the data signals of vibrational acceleration and frictional torque were collected and processed using data acquisition instrument. The entropy characteristic parameters of 3D vibrational acceleration were extracted based on wavelet packet decomposition method. The end-face topography was measured with ST400 three-dimensional noncontact surface topography instrument.

Findings

The geometry of pits plays a key role in influencing friction performance; the permutation entropy and fuzzy entropy of the vibration acceleration signal changed with variations in microtextured parameters. A textured surface with appropriately size parameters can trap debris, enhance the dynamic pressure effect, reduce impact between the friction interfaces and improve the frictional vibrational performance. In this research, microtextured surface with Φ150 µm-10% and Φ200 µm-5% can effectively reduce friction and vibration between the end faces of a dry gas seal.

Originality/value

DLC film improves the hardness of seal ring end face, and microtexture improves the dynamic effect; the tribological behavior monitoring can be realized by analyzing the characteristics of vibration acceleration sensitive parameter with friction state. The findings will provide a basis for further research in the field of tribology and the microtexture optimization of dry gas seal ring end face.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0389/

Details

Industrial Lubrication and Tribology, vol. 76 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 July 2024

Peng Gao, Xiuqin Su, Zhibin Pan, Maosen Xiao and Wenbo Zhang

This study aims to promote the anti-disturbance and tracking accuracy performance of the servo systems, in which a modified active disturbance rejection control (MADRC) scheme is…

Abstract

Purpose

This study aims to promote the anti-disturbance and tracking accuracy performance of the servo systems, in which a modified active disturbance rejection control (MADRC) scheme is proposed.

Design/methodology/approach

An adaptive radial basis function (ARBF) neural network is utilized to estimate and compensate dominant friction torque disturbance, and a parallel high-gain extended state observer (PHESO) is employed to further compensate residual and other uncertain disturbances. This parallel compensation structure reduces the burden of single ESO and improves the response speed of permanent magnet synchronous motor (PMSM) to hybrid disturbances. Moreover, the sliding mode control (SMC) rate is introduced to design an adaptive update law of ARBF.

Findings

Simulation and experimental results show that as compared to conventional ADRC and SMC algorithms, the position tracking error is only 2.3% and the average estimation error of the total disturbances is only 1.4% in the proposed MADRC algorithm.

Originality/value

The disturbance parallel estimation structure proposed in MADRC algorithm is proved to significantly improve the performance of anti-disturbance and tracking accuracy.

Article
Publication date: 16 July 2024

Jinming Zhen, Congcong Zhen, Min Yuan, Yingliang Liu, Li Wang, Lin Yuan, Yuhan Sun, Xinyue Zhang, Xiaoshu Yang and Haojian Huang

With the rapid development of the pipeline transportation and exploitation of mineral resources, it is urgent requirement for the high-performance polymer matrix composites with…

Abstract

Purpose

With the rapid development of the pipeline transportation and exploitation of mineral resources, it is urgent requirement for the high-performance polymer matrix composites with low friction and wear to meet the needs of solid material transportation. This paper aims to prepare high-performance ultrahigh molecular weight polyethylene (UHMWPE) matrix composites and investigate the effect of service condition on frictional behavior for composite.

Design/methodology/approach

In this study, UHMWPE matrix composites with different content of MoS2 were prepared and the tribological performance of the GCr15/composites friction pair in various sliding speeds (0.025–0.125 m/s) under dry friction conditions were studied by ball-on-disk tribology experiments.

Findings

Results show that the frictional behavior was shown to be sensitive to MoS2 concentration and sliding velocity. As the MoS2 content is 2 Wt.%, composites presented the best overall tribological performance. Besides, the friction coefficient fluctuates around 0.21 from 0.025 to 0.125 m/s sliding speed, while the wear rate increases gradually. Scanning electron microscopy images, energy-dispersive spectroscopy and Raman Spectrum analysis present that the main wear mechanisms were abrasive and fatigue wear.

Originality/value

The knowledge obtained herein will facilitate the design of UHMWPE matrix composites with promising self-lubrication performances which used in slag transport engineering field.

Details

Industrial Lubrication and Tribology, vol. 76 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 April 2024

Sangryul Go

The purpose of this study is to investigate the accumulation process of transfer film formation and dissipation and its effect on friction coefficients in non asbestos organic…

Abstract

Purpose

The purpose of this study is to investigate the accumulation process of transfer film formation and dissipation and its effect on friction coefficients in non asbestos organic friction materials with various lubricant FeS2 contents.

Design/methodology/approach

In total, 2.5%, 5% and 10% FeS2 were added as lubricating components to the friction materials. Friction tests composed of two stages were conducted for these friction materials, and the friction surfaces of the counterpart discs were examined using scanning electron microscopy.

Findings

The transfer film formation reduced the friction coefficients, and the transfer film dissipation influenced the recovery of the friction coefficients. The effect of a high content of FeS2 was to promote the transfer film formation at high temperatures and to hinder the transfer film dissipation at low temperatures, thus resulting in a decrease in the friction coefficients at high temperatures together with recovery retardation at low temperatures.

Originality/value

FeS2 contributed to the transfer film formation at high temperatures in the fade test but hindered the transfer film removal in the recovery test, resulting in the retardation of friction coefficient recovery. The mechanism by which the FeS2 lubricant component affected the transfer film formation and dissipation was analyzed and attributed to the different levels of FeS2 pyrolysis at different temperature levels.

Details

Industrial Lubrication and Tribology, vol. 76 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 June 2024

Haifei Zheng, Yanguo Yin, Rongrong Li, Cong Liu and Qi Chen

This paper aims to investigate the effect of chemical nickel plating and mechanical alloying on the mechanical and tribological properties of FeS/iron-based self-lubricating…

Abstract

Purpose

This paper aims to investigate the effect of chemical nickel plating and mechanical alloying on the mechanical and tribological properties of FeS/iron-based self-lubricating materials as well as the wear mechanism of the materials.

Design/methodology/approach

Surface modification of FeS powder was carried out by chemical nickel plating method and mechanical alloying of mixed powder by ball milling. The mechanical properties of the material were tested by tribological testing by M-200 ring block type friction and wear tester. Optical microscope was used to observe the surface morphology of the material and the transfer film on the surface of the mate parts, and scanning electron microscope and EDS were used to characterize the wear surface.

Findings

Mechanical alloying ball milling was carried out so that the lubricating particles in the matrix are uniformly dispersed; nickel-plated layer enhances the interfacial bonding of FeS and the matrix, and the combination of the two improves the mechanical properties of the material, and at the same time the friction side of the surface of the lubrication of FeS lubricant transfer film formed is denser and more intact, and the friction coefficient of friction side and the wear rate of the material have been greatly reduced.

Originality/value

This work aims to improve the mechanical and tribological properties of FeS/iron-based self-lubricating materials and to provide a reference for the preparation of materials with excellent overall properties.

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 May 2024

Muriel Durand, Olivier Lamotte and Mark Thomas

This study aims to address a significant gap in the literature by exploring the individual nature and microfoundation perspective of cultural friction during the integration phase…

Abstract

Purpose

This study aims to address a significant gap in the literature by exploring the individual nature and microfoundation perspective of cultural friction during the integration phase following cross-border mergers and acquisitions (CBMAs). It focuses on the role of face, a pivotal facet of interactions within Asian organizations, elucidating its importance in post-M&A integration outcomes.

Design/methodology/approach

Using a conceptual approach, this study draws on three bodies of literature, namely, cultural friction, microfoundations and face concerns. It reconsiders cultural friction as a microfounded construct and introduces face concerns as a pivotal element to understanding the challenges faced by managers at the forefront of CBMAs involving Asian companies. The conceptual approach is illustrated with examples for the world of practice.

Findings

This research makes two significant contributions to the fields of CBMAs and cultural friction. First, it demonstrates the relevance of the concept of cultural friction at the individual level, shedding light on the complex post-CBMA integration process. Second, this study demonstrates the critical role of face concerns in the sociocultural integration following CBMAs. This is underexplored in extant literature.

Originality/value

The crucial role of face is well known to those working in Asia. Yet academic inquiry remains underdeveloped on this issue for CBMAs. The friction derived from face concerns provides additional insights into the nature of the cultural challenges confronting managers during sociocultural integration and elucidates the micro-mechanisms influencing individuals’ responses to cultural friction. This research responds to calls to examine the human side of M&As uncovering previously neglected issues within intercultural managerial encounters.

Details

Journal of Asia Business Studies, vol. 18 no. 4
Type: Research Article
ISSN: 1558-7894

Keywords

Article
Publication date: 28 February 2024

Alexandra Thrall, T. Philip Nichols and Kevin R. Magill

The purpose of this study is to examine how young people imagine civic futures through speculative fiction writing about artificial intelligence (AI) technologies. The authors…

Abstract

Purpose

The purpose of this study is to examine how young people imagine civic futures through speculative fiction writing about artificial intelligence (AI) technologies. The authors argue that young people’s speculative fiction writing about AI not only helps make visible the ways they imagine the impacts of emerging technologies and the modes of collective action available for leveraging, resisting or countering them but also the frictions and fissures between the two.

Design/methodology/approach

This practitioner research study used data from student artifacts (speculative fiction stories, prewriting and relevant unit work) as well as classroom fieldnotes. The authors used inductive coding to identify emergent patterns in the ways young people wrote about AI and civics, as well as deductive coding using digital civic ecologies framework.

Findings

The findings of this study spotlight both the breadth of intractable civic concerns that young people associate with AI, as well as the limitations of the civic frameworks for imagining political interventions to these challenges. Importantly, they also indicate that the process of speculative writing itself can help reconcile this disjuncture by opening space to dwell in, rather than resolve, the tensions between “the speculative” and the “civic.”

Practical implications

Teachers might use speculative fiction writing and the digital civic ecologies framework to support students in critically examining possible AI futures and effective civic actions within them.

Originality/value

Speculative fiction writing offers an avenue for students to analyze the growing civic concerns posed by emerging platform technologies like AI.

Details

English Teaching: Practice & Critique, vol. 23 no. 1
Type: Research Article
ISSN: 1175-8708

Keywords

Article
Publication date: 2 July 2024

Ehsan MirHosseini, Seyed Ali Agha Mirjalily, Amir Javad Ahrar, Seyed Amir Abbas Oloomi and Mohammad Hasan Zare

This study aims to investigate the impact of varying the number of minimum quantity lubrication (MQL) nozzles, wind pressure, spindle speed and type of lubrication on surface…

46

Abstract

Purpose

This study aims to investigate the impact of varying the number of minimum quantity lubrication (MQL) nozzles, wind pressure, spindle speed and type of lubrication on surface roughness, fatigue life and tool wear in the drilling of aluminum alloy 6061-T6.

Design/methodology/approach

The effect of using different lubricants such as palm oil, graphene/water nanofluid and SiO2/water in the MQL method was compared with flood and dry methods. The lubricant flow and feed rate were kept constant throughout the drilling, while the number of nozzles, wind pressure and spindle speed varied. After preparing the parts, surface roughness, fatigue life and tool wear were measured, and the results were analyzed by ANOVA.

Findings

The results showed that using MQL with four nozzles and graphene/water nanofluid reduced surface roughness by 60%, followed by SiO2 nanofluid at 56%, and then by palm oil at 50%. Increasing the spindle speed in MQL mode with four nozzles using graphene nanofluid decreased surface roughness by 52% and improved fatigue life by 34% compared to the dry mode. SEM results showed that tool wear and deformation rates significantly decreased. Increasing the number of nozzles caused the fluid particles to penetrate the cutting area, resulting in improved tool cooling with lubrication in all directions.

Originality/value

Numerous attempts have been made worldwide to eliminate industrial lubricants due to environmental pollution. In this research, using nanofluid with wind pressure in MQL reduces environmental impacts and production costs while improving the quality of the final workpiece more than flood and dry methods.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0021/

Details

Industrial Lubrication and Tribology, vol. 76 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Access

Year

Last 6 months (159)

Content type

Article (159)
1 – 10 of 159