Search results

1 – 10 of over 9000
Open Access
Article
Publication date: 22 March 2022

Hüseyin Emre Ilgın

The aim of the study is to provide a comprehensive understanding of interrelations of structural systems and main planning considerations in supertall buildings (≥300 m).

3130

Abstract

Purpose

The aim of the study is to provide a comprehensive understanding of interrelations of structural systems and main planning considerations in supertall buildings (≥300 m).

Design/methodology/approach

Data were collected from 140 contemporary supertall towers using the case study method to analyze structural systems in the light of the key design considerations to contribute to the creation of more viable supertall building projects.

Findings

Central core typology, outriggered frame system, composite material and tapered prismatic and free forms were the most preferred features in supertall building design. Shear walled frame and tube systems occurred mostly in the 300–400 m height range, while outriggered frame systems were in the range of 300–600 m in height. Asia, the Middle East and North America mainly preferred outriggered frame systems, followed by tube systems. Considering the building function and form, the most preferred structural system in each of these groups was outriggered frame system, while mixed-use function stood out in all structural systems except in shear walled frame system.

Originality/value

To date, there has been no comprehensive study in the literature of the interrelations of structural systems and important planning considerations in the design of contemporary supertall towers through a large set of study samples. This critical issue was multidimensionally explored in this paper in light of 140 detailed case studies of supertall buildings around the world.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 12 April 2022

Hüseyin Emre Ilgın, Markku Karjalainen and Sofie Pelsmakers

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

3315

Abstract

Purpose

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

Design/methodology/approach

Data were collected through literature surveys and case studies to examine the architectural, structural and constructional points of view to contribute to knowledge about the increasing high-rise timber constructions globally.

Findings

The main findings of this study indicated that: (1) central cores were the most preferred type 10 of core arrangements; (2) frequent use of prismatic forms with rectilinear plans and regular extrusions were identified; (3) the floor-to-floor heights range between 2.81 and 3.30 m with an average of 3 m; (4) the dominance of massive timber use over hybrid construction was observed; (5) the most used structural system was the shear wall system; (6) generally, fire resistance in primary and secondary structural elements exceeded the minimum values specified in the building codes; (7) the reference sound insulation values used for airborne and impact sounds had an average of 50 and 56 dB, respectively.

Originality/value

There is no study in the literature that comprehensively examines the main architectural and structural design considerations of contemporary tall residential timber buildings.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 31 May 2024

Haylim Chha and Yongbo Peng

Contemporary stochastic optimal control by synergy of the probability density evolution method (PDEM) and conventional optimal controller exhibits less capability to guarantee…

Abstract

Purpose

Contemporary stochastic optimal control by synergy of the probability density evolution method (PDEM) and conventional optimal controller exhibits less capability to guarantee economical energy consumption versus control efficacy when non-stationary stochastic excitations drive hysteretic structures. In this regard, a novel multiscale stochastic optimal controller is invented based on the wavelet transform and the PDEM.

Design/methodology/approach

For a representative point, a conventional control law is decomposed into sub-control laws by deploying the multiresolution analysis. Then, the sub-control laws are classified into two generic control laws using resonant and non-resonant bands. Both frequency bands are established by employing actual natural frequency(ies) of structure, making computed efforts depend on actual structural properties and time-frequency effect of non-stationary stochastic excitations. Gain matrices in both bands are then acquired by a probabilistic criterion pertaining to system second-order statistics assessment. A multi-degree-of-freedom hysteretic structure driven by non-stationary and non-Gaussian stochastic ground accelerations is numerically studied, in which three distortion scenarios describing uncertainties in structural properties are considered.

Findings

Time-frequency-dependent gain matrices sophisticatedly address non-stationary stochastic excitations, providing efficient ways to independently suppress vibrations between resonant and non-resonant bands. Wavelet level, natural frequency(ies), and ratio of control forces in both bands influence the scheme’s outcomes. Presented approach outperforms existing approach in ensuring trade-off under uncertainty and randomness in system and excitations.

Originality/value

Presented control law generates control efforts relying upon resonant and non-resonant bands, and deploys actual structural properties. Cost-function weights and probabilistic criterion are promisingly developed, achieving cost-effectiveness of energy demand versus controlled structural performance.

Article
Publication date: 4 July 2023

Jianhang Xu, Peng Li and Yiren Yang

The paper aims to develop an efficient data-driven modeling approach for the hydroelastic analysis of a semi-circular pipe conveying fluid with elastic end supports. Besides the…

Abstract

Purpose

The paper aims to develop an efficient data-driven modeling approach for the hydroelastic analysis of a semi-circular pipe conveying fluid with elastic end supports. Besides the structural displacement-dependent unsteady fluid force, the steady one related to structural initial configuration and the variable structural parameters (i.e. the variable support stiffness) are considered in the modeling.

Design/methodology/approach

The steady fluid force is treated as a pipe preload, and the elastically supported pipe-fluid model is dealt with as a prestressed hydroelastic system with variable parameters. To avoid repeated numerical simulations caused by parameter variation, structural and hydrodynamic reduced-order models (ROMs) instead of conventional computational structural dynamics (CSD) and computational fluid dynamics (CFD) solvers are utilized to produce data for the update of the structural, hydrodynamic and hydroelastic state-space equations. Radial basis function neural network (RBFNN), autoregressive with exogenous input (ARX) model as well as proper orthogonal decomposition (POD) algorithm are applied to modeling these two ROMs, and a hybrid framework is proposed to incorporate them.

Findings

The proposed approach is validated by comparing its predictions with theoretical solutions. When the steady fluid force is absent, the predictions agree well with the “inextensible theory”. The pipe always loses its stability via out-of-plane divergence first, regardless of the support stiffness. However, when steady fluid force is considered, the pipe remains stable throughout as flow speed increases, consistent with the “extensible theory”. These results not only verify the accuracy of the present modeling method but also indicate that the steady fluid force, rather than the extensibility of the pipe, is the leading factor for the differences between the in- and extensible theories.

Originality/value

The steady fluid force and the variable structural parameters are considered in the data-driven modeling of a hydroelastic system. Since there are no special restrictions on structural configuration, steady flow pattern and variable structural parameters, the proposed approach has strong portability and great potential application for other hydroelastic problems.

Article
Publication date: 31 August 2022

Mohamed Badr, Maged A. Youssef, Salah El-Fitiany and Ajitanshu Vedrtnam

Understanding the structural performance of external glass curtain walls (façades) during fire exposure is critical for the safety of the occupants as their failure can lead to…

Abstract

Purpose

Understanding the structural performance of external glass curtain walls (façades) during fire exposure is critical for the safety of the occupants as their failure can lead to fire spread throughout the entire building. This concern is magnified by the recent increase in fire incidents and wildfires. This paper presents the first simplified technique to model single-skin façades during fire exposure and then utilizes it to examine the structural behaviour of vertical, inclined and oversized façade panels.

Design/methodology/approach

The proposed technique is based on conducting simplified heat transfer calculations and then utilizing a widely used structural analysis software program to analyze the façade. Validation for the proposed technique with reference to available experimental and numerical studies by others is presented. A parametric study is then conducted to assess the structural performance of different glass façade systems during exposure to fire.

Findings

The proposed technique was found to provide accurate predictions of the structural performance of glass façades during fire exposure. The structural performance of inclined façade systems during fire exposure was found to be superior to vertical and oversized façade systems.

Originality/value

This research paper is the first to provide a simplified technique that can be utilized to model single-skin facades under fire. The presented technique along with the conducted parametric study will improve the understanding of the fire behaviour of single-skin glass facades, which will lead to safer applications.

Open Access
Article
Publication date: 10 November 2023

Hüseyin Emre Ilgın

Supertall towers (300 m+) offer a viable solution to the increasing demand for housing and commercial space caused by rapid urban growth, migration from rural to urban areas and…

Abstract

Purpose

Supertall towers (300 m+) offer a viable solution to the increasing demand for housing and commercial space caused by rapid urban growth, migration from rural to urban areas and economic expansion in Asia. In this particular context, the efficient utilization of space becomes a crucial factor in the design process for Asian skyscrapers as they seek to address the changing socioeconomic landscape. This study will provide valuable guidance, especially to architectural and structural designers in the pursuit of sustainable development for Asian skyscrapers by analyzing space efficiency.

Design/methodology/approach

The methodology employed in this paper involved a case study approach to gather data on 75 Asian supertall towers in order to examine space efficiency.

Findings

Findings of the research can be summarized as follows: (1) the average space efficiency of these towers was 67.5%, ranging from a minimum of 55% to a maximum of 82%; (2) the average proportion of the core area to the gross floor area (GFA) was 29.5%, with values ranging from 14% to 38%; (3) the majority of Asian skyscrapers exhibited a tapered form and adopted a central core typology, which catered to mixed-use and office purposes; (4) the most frequently utilized structural system was a combination of composite and outriggered frames; (5) space efficiency tended to decrease as the height of the tower increased; and (6) there was no noteworthy difference in the impact of various load-bearing systems and building forms on space efficiency.

Originality/value

There is a noticeable lack of extensive research into space efficiency in supertall towers in Asia, which serves as a hub for skyscrapers. This study seeks to fill this substantial gap in the current scientific literature.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 7 October 2022

Hüseyin Emre Ilgın

To date, there are no studies in the literature that provide a comprehensive understanding of the interrelationships between the slenderness ratio and the main design criteria in…

2183

Abstract

Purpose

To date, there are no studies in the literature that provide a comprehensive understanding of the interrelationships between the slenderness ratio and the main design criteria in supertall towers (=300 m). In this paper, this important issue was explored using detailed data collected from 75 cases.

Design/methodology/approach

This paper was carried out with a comprehensive literature review including the database of the Council on Tall Buildings and Urban Habitat(CTBUH) (CTBUH, 2022), peer-reviewed journals, MSc theses and PhD dissertations, conference proceedings, fact sheets, architectural and structural magazines and other Internet sources. In this study, the case study method was also used to gather and consolidate information about supertall towers to analyze the interrelationships. Cases were 75 supertall buildings in various countries [44 from Asia (37 from China), 16 from the Middle East (6 from Dubai, the United Arab Emirates), 11 from the United States of America and 3 from Russia, 1 from the UK].

Findings

The paper's findings highlighted as follows: (1) for buildings in the height range of 300–399 m, the slenderness ratio was usually between 7 and 7.9 and megatall towers were frequently built at a slenderness ratio of 10–15; (2) the median slenderness ratio of buildings in the 400–599 m height ranges was around 8.6; (3) a trend towards supertall slender buildings (=8) was observed in Asia, the Middle East and North America; (4) residential, office and mixed-use towers had a median slenderness ratio of over 7.5; (5) all building forms were utilized in the construction of slender towers (>8); (6) the medium slenderness ratio was around 8 for supertall buildings constructed with outriggered frame and tube systems; (7) especially concrete towers reached values pushing the limits of slenderness (>10) and (8) since the number of some supertall building groups (e.g. steel towers) was not sufficient, establishing a scientific relationship between aspect ratio and related design criteria was not possible.

Originality/value

To date, there are no studies in the literature that provide a comprehensive understanding of the interrelationships between the slenderness ratio and the main design criteria in supertall towers (=300 m). This important issue was explored using detailed data collected from 75 cases.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 29 August 2023

Qingfeng Xu, Hèrm Hofmeyer and Johan Maljaars

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations…

Abstract

Purpose

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations do not include detailed models of the connections, whereas these connections may impact the overall behaviour of the structure. Therefore, this paper proposes a two-scale method to include screw connections.

Design/methodology/approach

The two-scale method consists of (a) a global-scale model that models the overall structural system and (b) a small-scale model to describe a screw connection. Components in the global-scale model are connected by a spring element instead of a modelled screw, and the stiffness of this spring element is predicted by the small-scale model, updated at each load step. For computational efficiency, the small-scale model uses a proprietary technique to model the behaviour of the threads, verified by simulations that model the complete thread geometry, and validated by existing pull-out experiments. For four screw failure modes, load-deformation behaviour and failure predictions of the two-scale method are verified by a detailed system model. Additionally, the two-scale method is validated for a combined load case by existing experiments, and demonstrated for different temperatures. Finally, the two-scale method is illustrated as part of a two-way coupled fire-structure simulation.

Findings

It was shown that proprietary ”threaded connection interaction” can predict thread relevant failure modes, i.e. thread failure, shank tension failure, and pull-out. For bearing, shear, tension, and pull-out failure, load-deformation behaviour and failure predictions of the two-scale method correspond with the detailed system model and Eurocode predictions. Related to combined load cases, for a variety of experiments a good correlation has been found between experimental and simulation results, however, pull-out simulations were shown to be inconsistent.

Research limitations/implications

More research is needed before the two-scale method can be used under all conditions. This relates to the failure criteria for pull-out, combined load cases, and temperature loads.

Originality/value

The two-scale method bridges the existing very detailed small-scale screw models with present global-scale structural models, that in the best case only use springs. It shows to be insightful, for it contains a functional separation of scales, revealing their relationships, and it is computationally efficient as it allows for distributed computing. Furthermore, local small-scale non-convergence (e.g. a screw failing) can be handled without convergence problems in the global-scale structural model.

Details

Journal of Structural Fire Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 29 January 2021

Orlando Troisi, Anna Visvizi and Mara Grimaldi

The purpose of this paper is to explore the emergence of innovation in smart service systems to conceptualize how actor’s relationships through technology-enabled interactions can…

3130

Abstract

Purpose

The purpose of this paper is to explore the emergence of innovation in smart service systems to conceptualize how actor’s relationships through technology-enabled interactions can give birth to novel technologies, processes, strategies and value. The objectives of the study are: to detect the different enablers that activate innovation in smart service systems; and to explore how these can lead dynamically to the emergence of different innovation patterns.

Design/methodology/approach

The empirical research adopts an approach based on constructivist grounded theory, performed through observation and semi-structured interviews to investigate the development of innovation in the Italian CTNA (Italian acronym of National Cluster for Aerospace Technology).

Findings

The identification and re-elaboration of the novelties that emerged from the analysis of the Cluster allow the elaboration of a diagram that classifies five different shades of innovation, introduced through some related theoretical propositions: technological; process; business model and data-driven; social and eco-sustainable; and practice-based.

Originality/value

The paper embraces a synthesis view that detects the enabling structural and systems dimensions for innovation (the “what”) and the way in which these can be combined to create new technologies, resources, values and social rules (the “how” dimension). The classification of five different kinds of innovation can contribute to enrich extant research on value co-creation and innovation and can shed light on how given technologies and relational strategies can produce varied innovation outcomes according to the diverse stakeholders engaged.

Details

Journal of Business & Industrial Marketing, vol. 39 no. 6
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 18 August 2023

Deanna Craig and M.Z. Naser

The extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply…

Abstract

Purpose

The extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply, fire can break out anywhere, at any time and for any number of reasons. Despite the apparent need, the fire design of structures still relies on expensive fire tests, complex finite element simulations and outdated procedures with little room for innovation. This paper aims to discuss the aforementioned issues.

Design/methodology/approach

This primer highlights the latest state of the art in this area with regard to performance-based design in fire structural engineering. In addition, this short review also presents a series of examples of successful implementation of performance-based fire design of structures from around the world.

Findings

A comparison between global efforts clearly shows the advances put forth by European and Oceanian efforts as opposed to the rest of the world. In addition, it can be clearly seen that most performance-based fire designs are related to steel and composite structures.

Originality/value

In one study, this paper presents a concise and global view to performance-based fire design of structures from success stories from around the world.

Details

Journal of Structural Fire Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Access

Year

Last 12 months (9104)

Content type

Article (9104)
1 – 10 of over 9000