Artificial bee colony algorithm for feature selection and improved support vector machine for text classification

Janani Balakumar (Department of Computer Science, Bharathiar University, Coimbatore, India)
S. Vijayarani Mohan (Department of Computer Science, Bharathiar University, Coimbatore, India)

Information Discovery and Delivery

ISSN: 2398-6247

Publication date: 19 August 2019

Abstract

Purpose

Owing to the huge volume of documents available on the internet, text classification becomes a necessary task to handle these documents. To achieve optimal text classification results, feature selection, an important stage, is used to curtail the dimensionality of text documents by choosing suitable features. The main purpose of this research work is to classify the personal computer documents based on their content.

Design/methodology/approach

This paper proposes a new algorithm for feature selection based on artificial bee colony (ABCFS) to enhance the text classification accuracy. The proposed algorithm (ABCFS) is scrutinized with the real and benchmark data sets, which is contrary to the other existing feature selection approaches such as information gain and χ2 statistic. To justify the efficiency of the proposed algorithm, the support vector machine (SVM) and improved SVM classifier are used in this paper.

Findings

The experiment was conducted on real and benchmark data sets. The real data set was collected in the form of documents that were stored in the personal computer, and the benchmark data set was collected from Reuters and 20 Newsgroups corpus. The results prove the performance of the proposed feature selection algorithm by enhancing the text document classification accuracy.

Originality/value

This paper proposes a new ABCFS algorithm for feature selection, evaluates the efficiency of the ABCFS algorithm and improves the support vector machine. In this paper, the ABCFS algorithm is used to select the features from text (unstructured) documents. Although, there is no text feature selection algorithm in the existing work, the ABCFS algorithm is used to select the data (structured) features. The proposed algorithm will classify the documents automatically based on their content.

Keywords

Citation

Balakumar, J. and Mohan, S.V. (2019), "Artificial bee colony algorithm for feature selection and improved support vector machine for text classification", Information Discovery and Delivery, Vol. 47 No. 3, pp. 154-170. https://doi.org/10.1108/IDD-09-2018-0045

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

To read the full version of this content please select one of the options below

You may be able to access this content by logging in via Shibboleth, Open Athens or with your Emerald account.
To rent this content from Deepdyve, please click the button.
If you think you should have access to this content, click the button to contact our support team.