Search results

1 – 10 of over 1000
Article
Publication date: 23 August 2019

Janani Balakumar and S. Vijayarani Mohan

Owing to the huge volume of documents available on the internet, text classification becomes a necessary task to handle these documents. To achieve optimal text classification…

Abstract

Purpose

Owing to the huge volume of documents available on the internet, text classification becomes a necessary task to handle these documents. To achieve optimal text classification results, feature selection, an important stage, is used to curtail the dimensionality of text documents by choosing suitable features. The main purpose of this research work is to classify the personal computer documents based on their content.

Design/methodology/approach

This paper proposes a new algorithm for feature selection based on artificial bee colony (ABCFS) to enhance the text classification accuracy. The proposed algorithm (ABCFS) is scrutinized with the real and benchmark data sets, which is contrary to the other existing feature selection approaches such as information gain and χ2 statistic. To justify the efficiency of the proposed algorithm, the support vector machine (SVM) and improved SVM classifier are used in this paper.

Findings

The experiment was conducted on real and benchmark data sets. The real data set was collected in the form of documents that were stored in the personal computer, and the benchmark data set was collected from Reuters and 20 Newsgroups corpus. The results prove the performance of the proposed feature selection algorithm by enhancing the text document classification accuracy.

Originality/value

This paper proposes a new ABCFS algorithm for feature selection, evaluates the efficiency of the ABCFS algorithm and improves the support vector machine. In this paper, the ABCFS algorithm is used to select the features from text (unstructured) documents. Although, there is no text feature selection algorithm in the existing work, the ABCFS algorithm is used to select the data (structured) features. The proposed algorithm will classify the documents automatically based on their content.

Article
Publication date: 6 January 2021

Miao Fan and Ashutosh Sharma

In order to improve the accuracy of project cost prediction, considering the limitations of existing models, the construction cost prediction model based on SVM (Standard Support…

Abstract

Purpose

In order to improve the accuracy of project cost prediction, considering the limitations of existing models, the construction cost prediction model based on SVM (Standard Support Vector Machine) and LSSVM (Least Squares Support Vector Machine) is put forward.

Design/methodology/approach

In the competitive growth and industries 4.0, the prediction in the cost plays a key role.

Findings

At the same time, the original data is dimensionality reduced. The processed data are imported into the SVM and LSSVM models for training and prediction respectively, and the prediction results are compared and analyzed and a more reasonable prediction model is selected.

Originality/value

The prediction result is further optimized by parameter optimization. The relative error of the prediction model is within 7%, and the prediction accuracy is high and the result is stable.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 13 December 2019

Aisong Qin, Qin Hu, Qinghua Zhang, Yunrong Lv and Guoxi Sun

Rotating machineries are widely used in manufacturing, petroleum, chemical, aircraft, and other industries. To accurately identify the operating conditions of such rotating…

Abstract

Purpose

Rotating machineries are widely used in manufacturing, petroleum, chemical, aircraft, and other industries. To accurately identify the operating conditions of such rotating machineries, this paper aims to propose a fault diagnosis method based on sensitive dimensionless parameters and particle swarm optimization (PSO)–support vector machine (SVM) for reducing the unexpected downtime and economic losses.

Design/methodology/approach

A relatively new hybrid intelligent fault classification approach is proposed by integrating multiple dimensionless parameters, the Fisher criterion and PSO–SVM. In terms of data pre-processing, a method based on wavelet packet decomposition (WPD), empirical mode decomposition (EMD) and dimensionless parameters is proposed for the extraction of the vibration signal features. The Fisher criterion is applied to reduce the redundant dimensionless parameters and search for the sensitive dimensionless parameters. Then, PSO is adapted to optimize the penalty parameter and kernel parameter for SVM. Finally, the sensitive dimensionless parameters are classified with the optimized model.

Findings

As two different time–frequency analysis methods, a method based on a combination of WPD and EMD used to extract multiple dimensionless parameters is presented. More vital diagnosis information can be obtained from the vibration signals than by only using a single time–frequency analysis method. Besides, a fault classification approach combining the sensitive dimensionless parameters and PSO-SVM classifier is proposed. The comparative experiment results show that the proposed method has a high classification accuracy and efficiency.

Originality/value

To the best of the authors’ knowledge, very few efforts have been performed for fault classification using multiple dimensionless parameters. In this paper, eighty dimensionless parameters have been studied intensively, which provides a new strategy in fault diagnosis field.

Open Access
Article
Publication date: 13 August 2021

Habeeb Balogun, Hafiz Alaka and Christian Nnaemeka Egwim

This paper seeks to assess the performance levels of BA-GS-LSSVM compared to popular standalone algorithms used to build NO2 prediction models. The purpose of this paper is to…

1128

Abstract

Purpose

This paper seeks to assess the performance levels of BA-GS-LSSVM compared to popular standalone algorithms used to build NO2 prediction models. The purpose of this paper is to pre-process a relatively large data of NO2 from Internet of Thing (IoT) sensors with time-corresponding weather and traffic data and to use the data to develop NO2 prediction models using BA-GS-LSSVM and popular standalone algorithms to allow for a fair comparison.

Design/methodology/approach

This research installed and used data from 14 IoT emission sensors to develop machine learning predictive models for NO2 pollution concentration. The authors used big data analytics infrastructure to retrieve the large volume of data collected in tens of seconds for over 5 months. Weather data from the UK meteorology department and traffic data from the department for transport were collected and merged for the corresponding time and location where the pollution sensors exist.

Findings

The results show that the hybrid BA-GS-LSSVM outperforms all other standalone machine learning predictive Model for NO2 pollution.

Practical implications

This paper's hybrid model provides a basis for giving an informed decision on the NO2 pollutant avoidance system.

Originality/value

This research installed and used data from 14 IoT emission sensors to develop machine learning predictive models for NO2 pollution concentration.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 18 September 2018

Anan Zhang, Pengxiang Zhang and Yating Feng

The study aims to accomplish the short-term load forecasting for microgrids. Short-term load forecasting is a vital component of economic dispatch in microgrids, and the…

Abstract

Purpose

The study aims to accomplish the short-term load forecasting for microgrids. Short-term load forecasting is a vital component of economic dispatch in microgrids, and the forecasting error directly affects the economic efficiency of operation. To some extent, short-term load forecasting is more difficult in microgrids than in macrogrids.

Design/methodology/approach

This paper presents the method of Dragonfly Algorithm-based support vector machine (DA-SVM) to forecast the short-term load in microgrids. This method adopts the combination of penalty factor C and kernel parameters of SVM which needs to be optimized as the position of dragonfly to find the solution. It takes the forecast accuracy calculated by SVM as the current fitness value of dragonfly and the optimal position of dragonfly obtained through iteration is considered as the optimal combination of parameters C and s of SVM.

Findings

DA-SVM algorithm was used to do short-term load forecast in the microgrid of an offshore oilfield group in the Bohai Sea, China and the forecasting results were compared with those of PSO-SVM, GA-SVM and BP neural network models. The experimental results indicate that the DA-SVM algorithm has better global searching ability. In the case of study, the root mean square errors of DA-SVA are about 1.5 per cent and its computation time is saved about 50 per cent.

Originality/value

The DA-SVM model presented in this paper provides an efficient and effective method of short-term load forecasting for a microgrid electric power system.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 March 2014

Thittikorn Phattanaphibul, Pisut Koomsap, Irwansyah Idram and Suchart Nachaisit

This paper aims to introduce selective vacuum manufacturing (SVM), a powder-based rapid prototyping (RP) technique, and the ongoing development to improve its capability to apply…

Abstract

Purpose

This paper aims to introduce selective vacuum manufacturing (SVM), a powder-based rapid prototyping (RP) technique, and the ongoing development to improve its capability to apply in temporary scaffold fabrication.

Design/methodology/approach

SVM employs a combination of sand casting and powder sintering process to construct a prototype layer by layer. A dense layer of support material is prepared and selectively removed to create a cavity where part material is filled and sintered to form a solid layer. In order for SVM to be considered for scaffold fabrication, besides preparing poly-lactic acid (PLA) for part material, support material preparation and process parameters identification have been studied. Redesigning of SVM machine to be more suitable for the real usage has also been presented.

Findings

Particle size of salt has been controlled, and its suitable composition with flour and water has been determined. Process parameters have been identified to scale down the size of scaffolds to meso-scale and to achieve mechanical requirement. Properties of fabricated scaffolds have been enhanced and can be used for soft tissue applications. A prototype of the medical SVM machine has been constructed and tested. An examination of scaffolds fabricated on this new machine also showed their qualification for soft tissue application.

Research limitations/implications

Further study will be on conducting a direct cytotoxicity test to provide the evidence for tissue growth before the clinical usage, on continuing to scaling down the scaffold size, and on improving SVM to meet the requirement of hard tissue.

Originality/value

This simple, inexpensive RP technique demonstrates its viability for scaffold fabrication.

Details

Rapid Prototyping Journal, vol. 20 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 February 2024

Chong Wu, Xiaofang Chen and Yongjie Jiang

While the Chinese securities market is booming, the phenomenon of listed companies falling into financial distress is also emerging, which affects the operation and development of…

Abstract

Purpose

While the Chinese securities market is booming, the phenomenon of listed companies falling into financial distress is also emerging, which affects the operation and development of enterprises and also jeopardizes the interests of investors. Therefore, it is important to understand how to accurately and reasonably predict the financial distress of enterprises.

Design/methodology/approach

In the present study, ensemble feature selection (EFS) and improved stacking were used for financial distress prediction (FDP). Mutual information, analysis of variance (ANOVA), random forest (RF), genetic algorithms, and recursive feature elimination (RFE) were chosen for EFS to select features. Since there may be missing information when feeding the results of the base learner directly into the meta-learner, the features with high importance were fed into the meta-learner together. A screening layer was added to select the meta-learner with better performance. Finally, Optima hyperparameters were used for parameter tuning by the learners.

Findings

An empirical study was conducted with a sample of A-share listed companies in China. The F1-score of the model constructed using the features screened by EFS reached 84.55%, representing an improvement of 4.37% compared to the original features. To verify the effectiveness of improved stacking, benchmark model comparison experiments were conducted. Compared to the original stacking model, the accuracy of the improved stacking model was improved by 0.44%, and the F1-score was improved by 0.51%. In addition, the improved stacking model had the highest area under the curve (AUC) value (0.905) among all the compared models.

Originality/value

Compared to previous models, the proposed FDP model has better performance, thus bridging the research gap of feature selection. The present study provides new ideas for stacking improvement research and a reference for subsequent research in this field.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 10 March 2022

Jayaram Boga and Dhilip Kumar V.

For achieving the profitable human activity recognition (HAR) method, this paper solves the HAR problem under wireless body area network (WBAN) using a developed ensemble learning…

94

Abstract

Purpose

For achieving the profitable human activity recognition (HAR) method, this paper solves the HAR problem under wireless body area network (WBAN) using a developed ensemble learning approach. The purpose of this study is,to solve the HAR problem under WBAN using a developed ensemble learning approach for achieving the profitable HAR method. There are three data sets used for this HAR in WBAN, namely, human activity recognition using smartphones, wireless sensor data mining and Kaggle. The proposed model undergoes four phases, namely, “pre-processing, feature extraction, feature selection and classification.” Here, the data can be preprocessed by artifacts removal and median filtering techniques. Then, the features are extracted by techniques such as “t-Distributed Stochastic Neighbor Embedding”, “Short-time Fourier transform” and statistical approaches. The weighted optimal feature selection is considered as the next step for selecting the important features based on computing the data variance of each class. This new feature selection is achieved by the hybrid coyote Jaya optimization (HCJO). Finally, the meta-heuristic-based ensemble learning approach is used as a new recognition approach with three classifiers, namely, “support vector machine (SVM), deep neural network (DNN) and fuzzy classifiers.” Experimental analysis is performed.

Design/methodology/approach

The proposed HCJO algorithm was developed for optimizing the membership function of fuzzy, iteration limit of SVM and hidden neuron count of DNN for getting superior classified outcomes and to enhance the performance of ensemble classification.

Findings

The accuracy for enhanced HAR model was pretty high in comparison to conventional models, i.e. higher than 6.66% to fuzzy, 4.34% to DNN, 4.34% to SVM, 7.86% to ensemble and 6.66% to Improved Sealion optimization algorithm-Attention Pyramid-Convolutional Neural Network-AP-CNN, respectively.

Originality/value

The suggested HAR model with WBAN using HCJO algorithm is accurate and improves the effectiveness of the recognition.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 28 February 2022

Rui Zhang, Na Zhao, Liuhu Fu, Lihu Pan, Xiaolu Bai and Renwang Song

This paper aims to propose a new ultrasonic diagnosis method for stainless steel weld defects based on multi-domain feature fusion to solve two problems in the ultrasonic…

Abstract

Purpose

This paper aims to propose a new ultrasonic diagnosis method for stainless steel weld defects based on multi-domain feature fusion to solve two problems in the ultrasonic diagnosis of austenitic stainless steel weld defects. These are insufficient feature extraction and subjective dependence of diagnosis model parameters.

Design/methodology/approach

To express the richness of the one-dimensional (1D) signal information, the 1D ultrasonic testing signal was derived to the two-dimensional (2D) time-frequency domain. Multi-scale depthwise separable convolution was also designed to optimize the MobileNetV3 network to obtain deep convolution feature information under different receptive fields. At the same time, the time/frequent-domain feature extraction of the defect signals was carried out based on statistical analysis. The defect sensitive features were screened out through visual analysis, and the defect feature set was constructed by cascading fusion with deep convolution feature information. To improve the adaptability and generalization of the diagnostic model, the authors designed and carried out research on the hyperparameter self-optimization of the diagnostic model based on the sparrow search strategy and constructed the optimal hyperparameter combination of the model. Finally, the performance of the ultrasonic diagnosis of stainless steel weld defects was improved comprehensively through the multi-domain feature characterization model of the defect data and diagnosis optimization model.

Findings

The experimental results show that the diagnostic accuracy of the lightweight diagnosis model constructed in this paper can reach 96.55% for the five types of stainless steel weld defects, including cracks, porosity, inclusion, lack of fusion and incomplete penetration. These can meet the needs of practical engineering applications.

Originality/value

This method provides a theoretical basis and technical reference for developing and applying intelligent, efficient and accurate ultrasonic defect diagnosis technology.

Article
Publication date: 1 March 2003

Wenjian Wang, Zongben Xu and Jane Weizhen Lu

Artificial neural networks (ANN) are appearing as alternatives to traditional statistical modeling techniques in many scientific disciplines. However, the inherent drawbacks of…

1121

Abstract

Artificial neural networks (ANN) are appearing as alternatives to traditional statistical modeling techniques in many scientific disciplines. However, the inherent drawbacks of neural networks such as topology specification, undue training expense, local minima and training unpredictability will overlay their merits in engineering applications, especially. In this paper, adaptive radial basis function (ARBF) network and improved support vector machine (SVM) are presented in atmospheric sciences. The principle component analysis (PCA) technique is employed to the ARBF network as well, namely, ARBF/PCA network for the convenience of expression and comparison, so as to fasten the learning process. Comparing with traditional neural network models, the proposed models can automatically determine the size of network and parameters, fasten the learning process and achieve good generalization performances in prediction of pollutant level. The simulation results based on a real‐world data set demonstrate the effectiveness and robustness of the proposed methods.

Details

Engineering Computations, vol. 20 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 1000