Search results

1 – 10 of 268
Article
Publication date: 25 April 2024

Abdul-Manan Sadick, Argaw Gurmu and Chathuri Gunarathna

Developing a reliable cost estimate at the early stage of construction projects is challenging due to inadequate project information. Most of the information during this stage is…

Abstract

Purpose

Developing a reliable cost estimate at the early stage of construction projects is challenging due to inadequate project information. Most of the information during this stage is qualitative, posing additional challenges to achieving accurate cost estimates. Additionally, there is a lack of tools that use qualitative project information and forecast the budgets required for project completion. This research, therefore, aims to develop a model for setting project budgets (excluding land) during the pre-conceptual stage of residential buildings, where project information is mainly qualitative.

Design/methodology/approach

Due to the qualitative nature of project information at the pre-conception stage, a natural language processing model, DistilBERT (Distilled Bidirectional Encoder Representations from Transformers), was trained to predict the cost range of residential buildings at the pre-conception stage. The training and evaluation data included 63,899 building permit activity records (2021–2022) from the Victorian State Building Authority, Australia. The input data comprised the project description of each record, which included project location and basic material types (floor, frame, roofing, and external wall).

Findings

This research designed a novel tool for predicting the project budget based on preliminary project information. The model achieved 79% accuracy in classifying residential buildings into three cost_classes ($100,000-$300,000, $300,000-$500,000, $500,000-$1,200,000) and F1-scores of 0.85, 0.73, and 0.74, respectively. Additionally, the results show that the model learnt the contextual relationship between qualitative data like project location and cost.

Research limitations/implications

The current model was developed using data from Victoria state in Australia; hence, it would not return relevant outcomes for other contexts. However, future studies can adopt the methods to develop similar models for their context.

Originality/value

This research is the first to leverage a deep learning model, DistilBERT, for cost estimation at the pre-conception stage using basic project information like location and material types. Therefore, the model would contribute to overcoming data limitations for cost estimation at the pre-conception stage. Residential building stakeholders, like clients, designers, and estimators, can use the model to forecast the project budget at the pre-conception stage to facilitate decision-making.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 25 April 2024

Michael Dreyfuss and Gavriel David Pinto

Every business company deals with the dilemma of how much to invest in long-term (LT) versus short-term (ST) problem (LTvST problem). LT operations increase the reputation of the…

Abstract

Purpose

Every business company deals with the dilemma of how much to invest in long-term (LT) versus short-term (ST) problem (LTvST problem). LT operations increase the reputation of the company, and revenue is rewarded in the future. In contrast, ST operations result in immediate rewards. Thus, every organization faces the dilemma of how much to invest in LT versus ST activities. The former deals with the “what” or effectiveness, and the latter deals with the “how” or efficiency. The role of managers is to solve this dilemma; however, they often fail to do so, mainly because of a lack of knowledge. This study aims to propose a dynamic optimal control model that formulates and solves the LTvST problem.

Design/methodology/approach

This study proposes a dynamic optimal control model that formulates and solves the dilemma whether to invest in short- or LT operations.

Findings

This model is illustrated as an example of an academic institute that wants to maximize its reputation. Investing in effectiveness in the academy translates into investing in research, whereas investing in efficiency translates into investing in teaching. Universities and colleges with a good reputation attract stronger candidates and benefit from higher tuition fees. Steady-state conditions and insightful observations were obtained by studying the optimal solution and performing a sensitivity analysis.

Originality/value

To the best of the authors’ knowledge, this paper is the first one to explore the optimal strategy when trying to maximize the short and LT activities of a company and solve the LTvST problem. Furthermore, it is applied on universities where teaching is the ST activity and research the LT activity. The insights gleaned from the application are relevant to many different fields. The authors believe that the paper makes a significant contribution to academic literature and to business managers.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 23 April 2024

Fatemeh Ravandi, Azar Fathi Heli Abadi, Ali Heidari, Mohammad Khalilzadeh and Dragan Pamucar

Untimely responses to emergency situations in urban areas contribute to a rising mortality rate and impact society's primary capital. The efficient dispatch and relocation of…

Abstract

Purpose

Untimely responses to emergency situations in urban areas contribute to a rising mortality rate and impact society's primary capital. The efficient dispatch and relocation of ambulances pose operational and momentary challenges, necessitating an optimal policy based on the system's real-time status. While previous studies have addressed these concerns, limited attention has been given to the optimal allocation of technicians to respond to emergency situation and minimize overall system costs.

Design/methodology/approach

In this paper, a bi-objective mathematical model is proposed to maximize system coverage and enable flexible movement across bases for location, dispatch and relocation of ambulances. Ambulances relocation involves two key decisions: (1) allocating ambulances to bases after completing services and (2) deciding to change the current ambulance location among existing bases to potentially improve response times to future emergencies. The model also considers the varying capabilities of technicians for proper allocation in emergency situations.

Findings

The Augmented Epsilon-Constrained (AEC) method is employed to solve the proposed model for small-sized problem. Due to the NP-Hardness of the model, the NSGA-II and MOPSO metaheuristic algorithms are utilized to obtain efficient solutions for large-sized problems. The findings demonstrate the superiority of the MOPSO algorithm.

Practical implications

This study can be useful for emergency medical centers and healthcare companies in providing more effective responses to emergency situations by sending technicians and ambulances.

Originality/value

In this study, a two-objective mathematical model is developed for ambulance location and dispatch and solved by using the AEC method as well as the NSGA-II and MOPSO metaheuristic algorithms. The mathematical model encompasses three primary types of decision-making: (1) Allocating ambulances to bases after completing their service, (2) deciding to relocate the current ambulance among existing bases to potentially enhance response times to future emergencies and (3) considering the diverse abilities of technicians for accurate allocation to emergency situations.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 24 April 2024

Ronnie Figueiredo and Pedro Cabral

The purpose of this paper is to model a process for moving toward sustainable ecosystem service decisions in a Coastal Biodiversity and discuss the directions of the process for…

Abstract

Purpose

The purpose of this paper is to model a process for moving toward sustainable ecosystem service decisions in a Coastal Biodiversity and discuss the directions of the process for decision-makers to apply in ocean ecosystem services.

Design/methodology/approach

After the development of theoretical approaches to understand their prospects for the future development of ecosystem services, the authors worked on a process for developing factors for sustainable decision-making. It uses the Delphi method to develop all the factors supported by six dimensions in two specific moments: deductive-inductive and inductive-deductive.

Findings

This process of modeling the factors expands the possibility of adaptive governance to make prior and subsequent decisions using factors related to dimensions, stakeholders and benefits, risks, opportunities and costs.

Research limitations/implications

Considering the limitations, future studies could use another database to widen the view in terms of the studies, factors, dimensions and other additional information to maintain the evolution of this process in ocean ecosystem services decision-making. Another limitation arose in the number of projects and experts defining the factors. This may prevent the opportunity to have more impact in terms of future decisions if more sources are used in the market. In addition, time and the access to experts during this modeling process demonstrate a limitation, as does the time for feedback.

Practical implications

This set of factors developed for adaptive governance decision-making can be applied to develop a prior alignment of stakeholder interests with sustainable practices.

Social implications

This set of factors developed with the intervention of experts reinforces the importance of sustainable collective decisions on ocean ecosystem services. This is a joint approach with participants in the NextOcean project, sponsored by the European Commissions (EC)’s Horizon 2020 program. An Earth Observation-based Consortia aims to create sustainable value for Space, Land and Oceans.

Originality/value

This modeling process generated dimensions and factors to support adaptive governance stakeholders in making sustainable decisions in a coastal biodiversity zone.

Details

Sustainability Accounting, Management and Policy Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-8021

Keywords

Article
Publication date: 22 April 2024

Muhammad Abas, Tufail Habib and Sahar Noor

This study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D…

Abstract

Purpose

This study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D scanning with the Kinect sensor and conducts a comparative analysis of SAFO durability with varying thicknesses and materials, including polylactic acid (PLA) and carbon fiber-reinforced (PLA-C), to address research gaps from prior studies.

Design/methodology/approach

In this study, the methodology comprises key components: data capture using a cost-effective Microsoft Kinect® Xbox 360 scanner to obtain precise leg dimensions for SAFOs. SAFOs are designed using CAD tools with varying thicknesses (3, 4, and 5 mm) while maintaining consistent geometry, allowing controlled thickness impact investigation. Fabrication uses PLA and PLA-C materials via FDM 3D printing, providing insights into material suitability. Mechanical analysis uses dual finite element analysis to assess force–displacement curves and fracture behavior, which were validated through experimental testing.

Findings

The results indicate that the precision of the scanned leg dimensions, compared to actual anthropometric data, exhibits a deviation of less than 5%, confirming the accuracy of the cost-effective scanning approach. Additionally, the research identifies optimal thicknesses for SAFOs, recommending a 4 and 5 mm thickness for PLA-C-based SAFOs and an only 5 mm thickness for PLA-based SAFOs. This optimization enhances the overall performance and effectiveness of these orthotic solutions.

Originality/value

This study’s innovation lies in its holistic approach, combining low-cost 3D scanning, 3D printing and computational simulations to optimize SAFO materials and thickness. These findings advance the creation of cost-effective and efficient orthotic solutions.

Article
Publication date: 25 April 2024

Linda Brennan, David Micallef, Eva L. Jenkins, Lukas Parker and Natalia Alessi

This study aims to explore the use of a double diamond design method to engage the industry in a sector-wide response to the issues of food waste as constructed by consumers. This…

Abstract

Purpose

This study aims to explore the use of a double diamond design method to engage the industry in a sector-wide response to the issues of food waste as constructed by consumers. This particular design method is achieved by an exploration of a collective intelligence-participatory design (CIPD) project to engage industry participants in understanding and responding to consumers’ perceptions of the role of packaging in reducing food waste.

Design/methodology/approach

Using the UK Design Council’s double diamond design method as a guiding conceptual principle, the project recruited industry participants from medium to large food businesses across various food categories. Two scoping workshops with industry were held prior to the initiation of a 12-stage project (n = 57), and then two industry workshops were held (n = 4 and 14). Eighty participants completed an online qualitative survey, and 23 industry participants took part in a Think Tank Sprint Series. The Think Tanks used participatory design approaches to understand barriers and opportunities for change within food industry sub-sectors and test the feasibility and acceptability of package designs to reduce consumer waste.

Findings

For CIPD to work for complex problems involving industry, it is vital that stakeholders across macro- and micro-subsystems are involved and that adequate time is allowed to address that complexity. Using both the right tools for engagement and the involvement of the right mix of representatives across various sectors of industry is critical to reducing blame shift. The process of divergence and convergence allowed clear insight into the long-term multi-pronged approach needed for the complex problem.

Originality/value

Participatory design has been useful within various behaviour change settings. This paper has demonstrated the application of the double diamond model in a social marketing setting, adding value to an industry-wide project that included government, peak bodies, manufacturing and production and retailers.

Details

Journal of Social Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6763

Keywords

Article
Publication date: 25 April 2024

Metin Uzun

This research study aims to minimize autonomous flight cost and maximize autonomous flight performance of a slung load carrying rotary wing mini unmanned aerial vehicle (i.e. UAV…

Abstract

Purpose

This research study aims to minimize autonomous flight cost and maximize autonomous flight performance of a slung load carrying rotary wing mini unmanned aerial vehicle (i.e. UAV) by stochastically optimizing autonomous flight control system (AFCS) parameters. For minimizing autonomous flight cost and maximizing autonomous flight performance, a stochastic design approach is benefitted over certain parameters (i.e. gains of longitudinal PID controller of a hierarchical autopilot system) meanwhile lower and upper constraints exist on these design parameters.

Design/methodology/approach

A rotary wing mini UAV is produced in drone Laboratory of Iskenderun Technical University. This rotary wing UAV has three blades main rotor, fuselage, landing gear and tail rotor. It is also able to carry slung loads. AFCS variables (i.e. gains of longitudinal PID controller of hierarchical autopilot system) are stochastically optimized to minimize autonomous flight cost capturing rise time, settling time and overshoot during longitudinal flight and to maximize autonomous flight performance. Found outcomes are applied during composing rotary wing mini UAV autonomous flight simulations.

Findings

By using stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads over previously mentioned gains longitudinal PID controller when there are lower and upper constraints on these variables, a high autonomous performance having rotary wing mini UAV is obtained.

Research limitations/implications

Approval of Directorate General of Civil Aviation in Republic of Türkiye is essential for real-time rotary wing mini UAV autonomous flights.

Practical implications

Stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads is properly valuable for recovering autonomous flight performance cost of any rotary wing mini UAV.

Originality/value

Establishing a novel procedure for improving autonomous flight performance cost of a rotary wing mini UAV carrying slung loads and introducing a new process performing stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads meanwhile there exists upper and lower bounds on design variables.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 April 2024

Mohsen Jami, Hamidreza Izadbakhsh and Alireza Arshadi Khamseh

This study aims to minimize the cost and time of blood delivery in the whole blood supply chain network (BSCN) in disaster conditions. In other words, integrating all strategic…

Abstract

Purpose

This study aims to minimize the cost and time of blood delivery in the whole blood supply chain network (BSCN) in disaster conditions. In other words, integrating all strategic, tactical and operational decisions of three levels of blood collection, processing and distribution leads to satisfying the demand at the right time.

Design/methodology/approach

This paper proposes an integrated BSCN in disaster conditions to consider four categories of facilities, including temporary blood collection centers, field hospitals, main blood processing centers and medical centers, to optimize demand response time appropriately. The proposed model applies the location of all permanent and emergency facilities in three levels: blood collection, processing and distribution. Other essential decisions, including multipurpose facilities, emergency transportation, inventory and allocation, were also used in the model. The LP metric method is applied to solve the proposed bi-objective mathematical model for the BSCN.

Findings

The findings show that this model clarifies its efficiency in the total cost and blood delivery time reduction, which results in a low carbon transmission of the blood supply chain.

Originality/value

The researchers proposed an integrated BSCN in disaster conditions to minimize the cost and time of blood delivery. They considered multipurpose capabilities for facilities (e.g. field hospitals are responsible for the three purposes of blood collection, processing and distribution), and so locating permanent and emergency facilities at three levels of blood collection, processing and distribution, support facilities, emergency transportation and traffic on the route with pollution were used to present a new model.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 24 April 2024

Haider Jouma, Muhamad Mansor, Muhamad Safwan Abd Rahman, Yong Jia Ying and Hazlie Mokhlis

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand…

Abstract

Purpose

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand is a residential area that includes 20 houses.

Design/methodology/approach

The daily operational strategy of the proposed MG allows to vend and procure utterly between the main grid and MG. The smart metre of every consumer provides the supplier with the daily consumption pattern which is amended by demand side management (DSM). The daily operational cost (DOC) CO2 emission and other measures are utilized to evaluate the system performance. A grey wolf optimizer was employed to minimize DOC including the cost of procuring energy from the main grid, the emission cost and the revenue of sold energy to the main grid.

Findings

The obtained results of winter and summer days revealed that DSM significantly improved the system performance from the economic and environmental perspectives. With DSM, DOC on winter day was −26.93 ($/kWh) and on summer day, DOC was 10.59 ($/kWh). While without considering DSM, DOC on winter day was −25.42 ($/kWh) and on summer day DOC was 14.95 ($/kWh).

Originality/value

As opposed to previous research that predominantly addressed the long-term operation, the value of the proposed research is to investigate the short-term operation (24-hour) of MG that copes with vital contingencies associated with selling and procuring energy with the main grid considering the environmental cost. Outstandingly, the proposed research engaged the consumers by smart meters to apply demand-sideDSM, while the previous studies largely focused on supply side management.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 29 April 2024

Yuxue Chen and Yuqian Zhang

This study aims to investigate the influence of digital transformation on the overall financial performance of firms, with a specific focus on Chinese-listed companies from 2010…

Abstract

Purpose

This study aims to investigate the influence of digital transformation on the overall financial performance of firms, with a specific focus on Chinese-listed companies from 2010 to 2021. It seeks to understand the impacts on various accounting and financial indicators in emerging economies such as China.

Design/methodology/approach

This study employs a text-mining approach to construct a digital transformation index based on the data sample of 11,814 firm-year observations from China’s A-share listed companies. This index serves as a proxy to measure the extent of digital transformation and its impact on financial performance and health.

Findings

The findings indicate that digital transformation significantly enhances overall financial performance and health, as evidenced by increased profitability, reduced operational costs, and lowered financial risks. The study reveals a time-lagged effect, where the benefits of digital transformation become more apparent after about one year. Further analysis shows that the value of digital transformation is more evident in a firm’s asset items. This raises the possibility of recognising the by-product, such as data resources, in the digital transformation process.

Originality/value

This research offers a unique contribution by linking digital transformation to financial performance using a large dataset from China's A-share listed firms. Doing so enhances our understanding of the tangible effects of digital transformation on corporate performance. Furthermore, this research provides valuable insights for the advancement of future accounting practices and the development of standards.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Access

Year

Last week (268)

Content type

Earlycite article (268)
1 – 10 of 268