Search results

1 – 10 of over 1000
Article
Publication date: 29 December 2023

Noah Ray and Il Yong Kim

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the…

Abstract

Purpose

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the manufacturing process can be leveraged in design optimization. The purpose of the study is to propose a novel method that improves structural performance by optimizing 3D print orientation of FRAM components.

Design/methodology/approach

This work proposes a two-part design optimization method that optimizes 3D global print orientation and topology of a component to improve a structural objective function. The method considers two classes of design variables: (1) print orientation design variables and (2) density-based topology design variables. Print orientation design variables determine a unique 3D print orientation to influence anisotropic material properties. Topology optimization determines an optimal distribution of material within the optimized print orientation.

Findings

Two academic examples are used to demonstrate basic behavior of the method in tension and shear. Print orientation and sequential topology optimization improve structural compliance by 90% and 58%, respectively. An industry-level example, an aerospace component, is optimized. The proposed method is used to achieve an 11% and 15% reduction of structural compliance compared to alternative FRAM designs. In addition, compliance is reduced by 43% compared to an equal-mass aluminum design.

Originality/value

Current research surrounding FRAM focuses on the manufacturing process and neglects opportunities to leverage design freedom provided by FRAM. Previous FRAM optimization methods only optimize fiber orientation within a 2D plane and do not establish an optimized 3D print orientation, neglecting exploration of the entire orientation design space.

Open Access
Article
Publication date: 4 December 2023

Yonghua Li, Zhe Chen, Maorui Hou and Tao Guo

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Abstract

Purpose

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Design/methodology/approach

Based on the finite element approach coupled with the improved beluga whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design of the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar were defined as random variables, and the torsion bar's mass and strength were investigated using finite elements. Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale optimization (BWO) algorithm and run case studies.

Findings

The findings demonstrate that the IBWO has superior solution set distribution uniformity, convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize the anti-roll torsion bar design. The error between the optimization and finite element simulation results was less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was reduced by 35% and the stiffness was increased by 1.9%.

Originality/value

The study provides a methodological reference for the simulation optimization process of the lateral anti-roll torsion bar.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 6 February 2024

S. P. Sreenivas Padala and Prabhanjan M. Skanda

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early…

Abstract

Purpose

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early design stages. The objective is to optimize volumetric spaces (3D) instead of 2D spaces to enhance space utilization, thermal comfort, constructability and rental value of buildings

Design/methodology/approach

The integration of two fundamental concepts – BIM and MOO, forms the basis of proposed framework. In the early design phases of a project, BIM is used to generate precise building volume data. The non-sorting genetic algorithm-II, a MOO algorithm, is then used to optimize extracted volume data from 3D BIM models, considering four objectives: space utilization, thermal comfort, rental value and construction cost. The framework is implemented in context of a school of architecture building project.

Findings

The findings of case study demonstrate significant improvements resulting from MOO of building volumes. Space utilization increased by 30%, while thermal comfort improved by 20%, and construction costs were reduced by 10%. Furthermore, rental value of the case study building increased by 33%.

Practical implications

The proposed framework offers practical implications by enabling project teams to generate optimal building floor layouts during early design stages, thereby avoiding late costly changes during construction phase of project.

Originality/value

The integration of BIM and MOO in this study provides a unique approach to optimize building volumes considering multiple factors during early design stages of a project

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 30 April 2024

Xiaohan Kong, Shuli Yin, Yunyi Gong and Hajime Igarashi

The prolonged training time of the neural network (NN) has sparked considerable debate regarding their application in the field of optimization. The purpose of this paper is to…

Abstract

Purpose

The prolonged training time of the neural network (NN) has sparked considerable debate regarding their application in the field of optimization. The purpose of this paper is to explore the beneficial assistance of NN-based alternative models in inductance design, with a particular focus on multi-objective optimization and uncertainty analysis processes.

Design/methodology/approach

Under Gaussian-distributed manufacturing errors, this study predicts error intervals for Pareto points and select robust solutions with minimal error margins. Furthermore, this study establishes correlations between manufacturing errors and inductance value discrepancies, offering a practical means of determining permissible manufacturing errors tailored to varying accuracy requirements.

Findings

The NN-assisted methods are demonstrated to offer a substantial time advantage in multi-objective optimization compared to conventional approaches, particularly in scenarios where the trained NN is repeatedly used. Also, NN models allow for extensive data-driven uncertainty quantification, which is challenging for traditional methods.

Originality/value

Three objectives including saturation current are considered in the multi-optimization, and the time advantages of the NN are thoroughly discussed by comparing scenarios involving single optimization, multiple optimizations, bi-objective optimization and tri-objective optimization. This study proposes direct error interval prediction on the Pareto front, using extensive data to predict the response of the Pareto front to random errors following a Gaussian distribution. This approach circumvents the compromises inherent in constrained robust optimization for inductance design and allows for a direct assessment of robustness that can be applied to account for manufacturing errors with complex distributions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 March 2024

Hemanth Kumar N. and S.P. Sreenivas Padala

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based…

Abstract

Purpose

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based multiobjective optimization (MOO) model integrating the nondominated sorting genetic algorithm III (NSGA-III) to enhance sustainability. The goal is to reduce embodied energy and cost in the design process.

Design/methodology/approach

Through a case study research method, this study uses BIM, NSGA-III and real-world data in five phases: literature review, identification of factors, BIM model development, MOO model creation and validation in the architecture, engineering and construction sectors.

Findings

The innovative BIM-based MOO model optimizes embodied energy and cost to achieve sustainable construction. A commercial building case study validation showed a reduction of 30% in embodied energy and 21% in cost. This study validates the model’s effectiveness in integrating sustainability goals, enhancing decision-making, collaboration, efficiency and providing superior assessment.

Practical implications

This model delivers a unified approach to sustainable design, cutting carbon footprint and strengthening the industry’s ability to attain sustainable solutions. It holds potential for broader application and future integration of social and economic factors.

Originality/value

The research presents a novel BIM-based MOO model, uniquely focusing on sustainable construction with embodied energy and cost considerations. This holistic and innovative framework extends existing methodologies applicable to various buildings and paves the way for additional research in this area.

Article
Publication date: 1 March 2024

Insong Kim, Hakson Jin, Kwangsong Ri, Sunbong Hyon and Cholhui Huang

A combustor design is a particularly important and difficult task in the development of gas turbine engines. During studies for accurate and easy combustor design, reasonable…

Abstract

Purpose

A combustor design is a particularly important and difficult task in the development of gas turbine engines. During studies for accurate and easy combustor design, reasonable design methodologies have been established and used in engine development. The purpose of this paper is to review the design methodology for combustor in development of advanced gas turbine engines. The advanced combustor development task can be successfully achieved in less time and at lower cost by adopting new and superior design methodologies.

Design/methodology/approach

The review considers the main technical problems (combustion, cooling, fuel injection and ignition technology) in the development of modern combustor design and deals with combustor design methods by dividing it into preliminary design, performance evaluation, optimization and experiment. The advanced combustion and cooling technologies mainly used in combustor design are mentioned in detail. In accordance with the modern combustor design method, the design mechanisms are considered and the methods used in every stage of the design are reviewed technically.

Findings

The improved performances and strict emission limits of gas turbine engines require the application of advanced technologies when designing combustors. The optimized design mechanism and reasonable performance evaluation methods are very important in reducing experiments and increasing the effectiveness of the design.

Originality/value

This paper provides a comprehensive review of the design methodology for the advanced gas turbine engine combustor.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 May 2023

Pankaj Kumar Detwal, Rajat Agrawal, Ashutosh Samadhiya, Anil Kumar and Jose Arturo Garza-Reyes

The literature that is presently available on sustainable supply chain management (SSCM) combining optimization and industry 4.0 techniques falls short in its depictions of the…

450

Abstract

Purpose

The literature that is presently available on sustainable supply chain management (SSCM) combining optimization and industry 4.0 techniques falls short in its depictions of the recent developments, budding pertinent areas and the importance of SSCM in the growth of industrial economies around the world. This article's main objective is to analyze current trends, highlight the latest initiatives and perform a meta-analysis of the literature that is currently accessible in the SSCM area with a special focus on optimization and industry 4.0 techniques. The paper also proposes a conceptual framework that will assist in illuminating how the ideas of optimization and industry 4.0 may contribute to realizing sustainability in supply chains.

Design/methodology/approach

The proposed study systematically reviews 85 research publications published between 2010 and 2022 in referenced peer-reviewed journals in diverse fields, including engineering, business and management, services and healthcare. Numerous categories are considered throughout the examination of the literature, including year-wise publications, prominent journals, type of research design, concerned industry and research technique used.

Findings

The study demonstrates a deeper comprehension of the literature in the field and its evolution throughout numerous industry sectors, which is helpful for both practitioners and academics. The results from the content analysis highlight various future research opportunities in the domain.

Originality/value

This is one of the first research articles that have attempted to establish, analyze and highlight the current trends and initiatives in the SSCM domain from an optimization and industry 4.0 techniques viewpoint. The cluster-based future research propositions also enhance the novelty of the study.

Details

Benchmarking: An International Journal, vol. 31 no. 4
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 2 May 2024

Xi Liang Chen, Zheng Yu Xie, Zhi Qiang Wang and Yi Wen Sun

The six-axis force/torque sensor based on a Y-type structure has the advantages of simple structure, small space volume, low cost and wide application prospects. To meet the…

Abstract

Purpose

The six-axis force/torque sensor based on a Y-type structure has the advantages of simple structure, small space volume, low cost and wide application prospects. To meet the overall structural stiffness requirements and sensor performance requirements in robot engineering applications, this paper aims to propose a Y-type six-axis force/torque sensor.

Design/methodology/approach

The performance indicators such as each component sensitivities and stiffnesses of the sensor were selected as optimization objectives. The multiobjective optimization equations were established. A multiple quadratic response surface in ANSYS Workbench was modeled by using the central composite design experimental method. The optimal manufacturing structural parameters were obtained by using multiobjective genetic algorithm.

Findings

The sensor was optimized and the simulation results show that the overload resistance of the sensor is 200%F.S., and the axial stiffness, radial stiffness, bending stiffness and torsional stiffness are 14.981 kN/mm, 16.855 kN/mm, 2.0939 kN m/rad and 6.4432 kN m/rad, respectively, which meet the design requirements, and the sensitivities of each component of the optimized sensor have been well increased to be 2.969, 2.762, 4.010, 2.762, 2.653 and 2.760 times as those of the sensor with initial structural parameters. The sensor prototype with optimized parameters was produced. According to the calibration experiment of the sensor, the maximum Class I and II errors and measurement uncertainty of each force/torque component of the sensor are 1.835%F.S., 1.018%F.S. and 1.606%F.S., respectively. All of them are below the required 2%F.S.

Originality/value

Hence, the conclusion can be drawn that the sensor has excellent comprehensive performance and meets the expected practical engineering requirements.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 April 2024

Vaishali Rajput, Preeti Mulay and Chandrashekhar Madhavrao Mahajan

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired…

Abstract

Purpose

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired algorithms to address complex optimization problems efficiently. These algorithms strike a balance between computational efficiency and solution optimality, attracting significant attention across domains.

Design/methodology/approach

Bio-inspired optimization techniques for feature engineering and its applications are systematically reviewed with chief objective of assessing statistical influence and significance of “Bio-inspired optimization”-based computational models by referring to vast research literature published between year 2015 and 2022.

Findings

The Scopus and Web of Science databases were explored for review with focus on parameters such as country-wise publications, keyword occurrences and citations per year. Springer and IEEE emerge as the most creative publishers, with indicative prominent and superior journals, namely, PLoS ONE, Neural Computing and Applications, Lecture Notes in Computer Science and IEEE Transactions. The “National Natural Science Foundation” of China and the “Ministry of Electronics and Information Technology” of India lead in funding projects in this area. China, India and Germany stand out as leaders in publications related to bio-inspired algorithms for feature engineering research.

Originality/value

The review findings integrate various bio-inspired algorithm selection techniques over a diverse spectrum of optimization techniques. Anti colony optimization contributes to decentralized and cooperative search strategies, bee colony optimization (BCO) improves collaborative decision-making, particle swarm optimization leads to exploration-exploitation balance and bio-inspired algorithms offer a range of nature-inspired heuristics.

Article
Publication date: 1 November 2022

Zihao Zheng, Yuanqi Li and Jaume Torres

This paper aims to propose a generative design method combined with meta-heuristic algorithm for automating and optimizing the floor layout of modular buildings using typical…

Abstract

Purpose

This paper aims to propose a generative design method combined with meta-heuristic algorithm for automating and optimizing the floor layout of modular buildings using typical standardized module units, which are the room module, the corridor module and the stair module.

Design/methodology/approach

The integrated framework involves the generative design method and optimization for modular construction. The generative rules are provided by geometric relationships and functionalities of the module units. An evaluation function of the generated floor plans is also presented by the combination of project cost and cost penalties for the geometric features. The multi-population genetic algorithm (MPGA) method is provided for the optimization of the combination of costs.

Findings

The proposed MPGA method is demonstrated fast and efficient at discovering the globally optimal solution. The results indicate that when the unit price of modules is high, the transportation distance is long, or the land cost is high, the layout cost, which related to the symmetry, the compactness and the energy is tend to be lower, making the optimal layout economical.

Originality/value

This paper presented an integrated framework of generative floor layout and optimization for modular construction by using typical module units. It fulfills the need for automated layout generation with repetitive units and corresponding assessment during the early design stage.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 1000