Search results

1 – 10 of 722
Article
Publication date: 28 August 2024

Yuhan Li, Qun Luo, Shiyu Zhao, Wenyan Qi, Zhong Huang and Guiming Mei

The purpose of this paper is to study the aerodynamic characteristics and uplift force tendencies of pantographs within the operational height span of 1,600–2,980 mm, aiming to…

Abstract

Purpose

The purpose of this paper is to study the aerodynamic characteristics and uplift force tendencies of pantographs within the operational height span of 1,600–2,980 mm, aiming to offer valuable insights for research concerning the adaptability of pantograph-catenary systems on double-stack high container transportation lines.

Design/methodology/approach

Eight pantograph models were formulated based on lines with the contact wire of 6,680 mm in height. The aerodynamic calculations were carried out using the SST k-ω separated vortex model. A more improved aerodynamic uplift force method was also presented. The change rule of the aerodynamic uplift force under different working heights of the pantograph was analyzed according to the transfer coefficients of the aerodynamic forces and moments.

Findings

The results show that the absolute values of the aerodynamic forces and moments of the upper and lower frame increase with the working height, whereas those of the collector head do not change. The absolute values of the transfer coefficients of the lower frame and link arm were significantly larger than those of the upper frame. Therefore, the absolute value of the aerodynamic uplift force increased and then decreased with the working height. The maximum value occurred at a working height of 2,400 mm.

Originality/value

A new method for calculating the aerodynamic uplift force of pantographs is proposed. The specifical change rule of the aerodynamic uplift force of the pantograph on double-stack high container transportation lines was determined from the perspective of the transfer coefficients of the aerodynamic forces and moments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 August 2024

Xiaohui Xiong, Jiaxu Geng, Kaiwen Wang and Xinran Wang

This paper aims to investigate the effect of different wing height layouts on the aerodynamic performance and flow structure of high-speed train, in a train-wing coupling method…

Abstract

Purpose

This paper aims to investigate the effect of different wing height layouts on the aerodynamic performance and flow structure of high-speed train, in a train-wing coupling method with multiple tandem wings installed on the train roof.

Design/methodology/approach

The improved delayed detached eddy simulation method based on shear stress transport k- ω turbulence model has been used to conduct computational fluid dynamics simulation on the train with three different wing height layouts, at a Reynolds number of 2.8 × 106. The accuracy of the numerical method has been validated by wind tunnel experiments.

Findings

The wing height layout has a significant effect on the lift, while its influence on the drag is weak. There are three distinctive vortex structures in the flow field: wingtip vortex, train body vortex and pillar vortex, which are influenced by the variation in wing height layout. The incremental wing layout reduces the mixing and merging between vortexes in the flow field, weakening the vorticity and turbulence intensity. This enhances the pressure difference between the upper and lower surfaces of both the train and wings, thereby increasing the overall lift. Simultaneously, it reduces the slipstream velocity at platform and trackside heights.

Originality/value

This paper contributes to understanding the aerodynamic characteristics and flow structure of a high-speed train coupled with wings. It provides a reference for the design aiming to achieve equivalent weight reduction through aerodynamic lift synergy in trains.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 July 2024

Hongying Niu, Xiaodong Yang, Jiayu Zhang and Shengyu Guo

Construction fall-from-height accidents are not only caused by a single factor but also by the risk coupling between two or more factors. The purpose of this paper is to…

Abstract

Purpose

Construction fall-from-height accidents are not only caused by a single factor but also by the risk coupling between two or more factors. The purpose of this paper is to quantitatively analyze the risk coupling relationships between multiple factors and identify critical factors in construction fall-from-height accidents.

Design/methodology/approach

A cause analysis framework was established from the perspective of human, machine, material, management and environmental factors. The definition, the classification and the process of risk coupling were proposed. The data from 824 historical accident reports from 2011 to 2021 were collected on government websites. A risk coupling analysis model was constructed to quantitatively analyze the risk coupling relationships of multiple factors based on the N-K model. The results were classified using K-means clustering analysis.

Findings

The results indicated that the greater the number of causal factors involved in risk coupling, the higher the risk coupling value and the higher the risk of accidents. However, specific risk coupling combinations occurred when the number of their coupling factors was not large. Human, machine and material factors were determined to be the critical factors when risk coupling between them tended to pose a greater risk of accidents.

Originality/value

This study established a cause analysis framework from five aspects and constructed a theoretical model to quantitatively analyze multi-factor coupling. Several suggestions were proposed for construction units to manage accident risks more effectively by controlling the number of factors and paying more attention to critical factors coupling and management and environmental factors.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 August 2024

Abdurrahim Temiz

This study aims to examine the impact of specific printing factors, such as layer height, line width and build orientation, on the overall quality of fused filament fabrication…

Abstract

Purpose

This study aims to examine the impact of specific printing factors, such as layer height, line width and build orientation, on the overall quality of fused filament fabrication (FFF) 3D printed structures. The project also intends to use response surface methodology (RSM) to maximize ultimate tensile strength (UTS) while lowering surface roughness and printing time.

Design/methodology/approach

This study used an FFF printer to fabricate samples of polylactic acid (PLA), which were then subjected to assessments of tensile strength and surface roughness. A tensile test was conducted under standardized conditions according to the ASTM D638 standard test method using the AG-50 kN Shimadzu Autograph. The Mitutoyo Surftest SJ-210, which utilizes a needle-tipped inductive method, was used to determine surface roughness. RSM was used for optimization.

Findings

This work provides useful insights into how the printing parameters affect FFF 3D printed structures, which may be used to optimize the printing process and improve PLA-based 3D printed products' qualities. The determined optimal values for building orientation, layer height and line width were 0°, 0.1 mm and 0.6 mm, respectively. The total desirability value of 0.80 implies desirable outcomes, and good agreement between experimental and projected response values supports the suggested models.

Originality/value

Previous RSM studies for 3D printing parameter optimization focused on mechanical properties or surface aspects, however, few examined multiple responses and their interactions. This study emphasizes the relevance of FFF parameters like line width, which are often overlooked but can dramatically impact printing quality. Mechanical properties, surface quality and printing time are integrated to comprehend optimization holistically.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 August 2024

Mohammad Hossein Hamzezadeh Nakhjavani, Faradjollah Askari and Orang Farzaneh

One of the primary challenges associated with excavation near buildings is the significant decrease in the bearing capacity of nearby foundations during the initial stages before…

Abstract

Purpose

One of the primary challenges associated with excavation near buildings is the significant decrease in the bearing capacity of nearby foundations during the initial stages before the stabilization of the excavation wall. This study aims to investigate the correlation between excavation height and foundation-bearing capacity under actual field conditions.

Design/methodology/approach

This paper uses a three-dimensional rotational failure mechanism to propose a novel method for estimating foundation-bearing capacity using the upper bound limit analysis approach.

Findings

The study delineates two distinct zones in the excavation height versus bearing capacity diagram. Initially, there is a significant reduction in foundation-bearing capacity at the onset of excavation, with decreases of up to 80% compared to its undisturbed state. Within a specific range of excavation heights, the bearing capacity remains relatively constant until reaching a critical height. Beyond this threshold, the entire soil mass behind the excavation wall becomes unstable. The critical excavation height is notably influenced by the soil's internal friction angle, excavation slope angle and soil cohesion parameter. Notably, when the ratio of excavation height to foundation width is less than 0.4, changes in slope angle have no significant impact on bearing capacity.

Originality/value

The bearing capacity estimates derived from the method proposed in this paper are deemed to reflect real-world scenarios closely compared to existing methodologies.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 August 2024

Mohammadsadegh Pahlavanzadeh, Sebastian Rulik, Włodzimierz Wróblewski and Krzysztof Rusin

The performance of a bladeless Tesla turbine is closely tied to momentum diffusion, kinetic energy transfer and wall shear stress generation on its rotating disks. The surface…

Abstract

Purpose

The performance of a bladeless Tesla turbine is closely tied to momentum diffusion, kinetic energy transfer and wall shear stress generation on its rotating disks. The surface roughness adds complexity of flow analysis in such a domain. This paper aims to assess the effect of roughness on flow structures and the application of roughness models in flow cross sections with submillimeter height, including both stationary and rotating walls.

Design/methodology/approach

This research starts with the examination of flow over a rough flat plate, and then proceeds to study flow within minichannels, evaluating the effect of roughness on flow characteristics. An in-house test stand validates the numerical solutions of minichannel. Finally, flow through the minichannel with corotating walls was analyzed. The k-ω SST turbulent model and Aupoix's roughness method are used for numerical simulations.

Findings

The findings emphasize the necessity of considering the constricted dimensions of the flow cross section, thereby improving the alignment of derived results with theoretical estimations. Moreover, this study explores the effects of roughness on flow characteristics within the minichannel with stationary and rotating walls, offering valuable insights into this intricate phenomenon, and depicts the appropriate performance of chosen roughness model in studied cases.

Originality/value

The originality of this investigation is the assessment and validation of flow characteristics inside minichannel with stationary and corotating walls when the roughness is implemented. This phenomenon, along with the effect of roughness on the transportation of kinetic energy to the rough surface of a minichannel in an in-house test setup, is assessed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 May 2024

Anand Mohan Pandey, Sajan Kapil and Manas Das

Selective jet electrodeposition (SJED) is an emerging additive manufacturing (AM) technology for realizing metallic components of nano and micro sizes. The deposited parts on the…

1200

Abstract

Purpose

Selective jet electrodeposition (SJED) is an emerging additive manufacturing (AM) technology for realizing metallic components of nano and micro sizes. The deposited parts on the substrate form metallurgical bonding, so separating them from the substrate is an unsolved issue. Therefore, this paper aims to propose a method for separating the deposited micro parts from a sacrificial substrate. Furthermore, single and multi-bead optimization is performed to fabricate microparts with varying density.

Design/methodology/approach

A typical SJED process consists of a nozzle (to establish a column of electrolytes) retrofitted on a machine tool (to provide relative motion between substrate and nozzle) that deposits material atom-by-atom on a conductive substrate.

Findings

A comprehensive study of process parameters affecting the layer height, layer width and morphology of the deposited micro-parts has been provided. The uniformity in the deposited parts can be achieved with the help of low applied voltage and high scanning speed. Multi-bead analysis for the flat surface condition is experimentally performed, and the flat surface condition is achieved when the centre distance between two adjacent beads is kept at half of the width of a single bead.

Originality/value

Although several literatures have demonstrated that the SJED process can be used for the fabrication of parts; however, part fabrication through multi-bead optimization is limited. Moreover, the removal of the fabricated part from the substrate is the novelty of the current work.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 March 2023

Ghassan Almasabha, Ali Shehadeh, Odey Alshboul and Omar Al Hattamleh

Buried pipelines under various soil embankment heights are cost-effective alternatives to transporting liquid products. This paper aims to assist pipeline architects and…

Abstract

Purpose

Buried pipelines under various soil embankment heights are cost-effective alternatives to transporting liquid products. This paper aims to assist pipeline architects and professionals in selecting the most cost-effective buried reinforced concrete pipelines under deep embankment soil with minor structural reinforcement while meeting shear stress requirements, safety and reliability constraints.

Design/methodology/approach

It is unfeasible to experimentally assess pipeline efficiency with high soil fill depth. Thus, to fill this gap, this research uses a dependable finite element analysis (FEA) to conduct a parametric study and carry out such an issue. This research considered reinforced concrete pipes with diameters of 25, 50, 75, 100, 125 and 150 cm at depths of 5, 10, 15 and 20 m.

Findings

According to this research, the proposed best pipeline diameter-to-thickness (D/T) proportions for soil embankment heights 5, 10, 15 and 20 m are 8.75, 4.8, 3.5 and 3.1, correspondingly. The cost-effective reinforced concrete (RC) pipeline thickness dramatically rises if the soil embankment reaches 20 m, indicating that the soil embankment depth highly influences it. Most of the analyzed reinforced concrete pipelines had a maximum deflection value of less than 1 cm, telling that the FEA accurately identified the pipeline width, needed flexural steel reinforcement, and concrete crack width while avoiding significant distortion.

Originality/value

The cost-effective thickness for the analyzed structured concrete pipes was calculated by considering the lowest required value of steel reinforcement. An algorithm was developed based on the parametric scientific findings to predict the ideal pipeline D/T ratio. A construction case study was also shown to assist architects and professionals in determining the best reinforced concrete pipeline geometry for a specific soil embankment height.

Details

Construction Innovation , vol. 24 no. 5
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 24 September 2024

Penghai Deng, Quansheng Liu and Haifeng Lu

The purpose of this paper is to propose a new combined finite-discrete element method (FDEM) to analyze the mechanical properties, failure behavior and slope stability of soil…

Abstract

Purpose

The purpose of this paper is to propose a new combined finite-discrete element method (FDEM) to analyze the mechanical properties, failure behavior and slope stability of soil rock mixtures (SRM), in which the rocks within the SRM model have shape randomness, size randomness and spatial distribution randomness.

Design/methodology/approach

Based on the modeling method of heterogeneous rocks, the SRM numerical model can be built and by adjusting the boundary between soil and rock, an SRM numerical model with any rock content can be obtained. The reliability and robustness of the new modeling method can be verified by uniaxial compression simulation. In addition, this paper investigates the effects of rock topology, rock content, slope height and slope inclination on the stability of SRM slopes.

Findings

Investigations of the influences of rock content, slope height and slope inclination of SRM slopes showed that the slope height had little effect on the failure mode. The influences of rock content and slope inclination on the slope failure mode were significant. With increasing rock content and slope dip angle, SRM slopes gradually transitioned from a single shear failure mode to a multi-shear fracture failure mode, and shear fractures showed irregular and bifurcated characteristics in which the cut-off values of rock content and slope inclination were 20% and 80°, respectively.

Originality/value

This paper proposed a new modeling method for SRMs based on FDEM, with rocks having random shapes, sizes and spatial distributions.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 August 2024

Walaa Metwally Kandil, Fawzi H. Zarzoura, Mahmoud Salah Goma and Mahmoud El-Mewafi El-Mewafi Shetiwi

This study aims to present a new rapid enhancement digital elevation model (DEM) framework using Google Earth Engine (GEE), machine learning, weighted interpolation and spatial…

Abstract

Purpose

This study aims to present a new rapid enhancement digital elevation model (DEM) framework using Google Earth Engine (GEE), machine learning, weighted interpolation and spatial interpolation techniques with ground control points (GCPs), where high-resolution DEMs are crucial spatial data that find extensive use in many analyses and applications.

Design/methodology/approach

First, rapid-DEM imports Shuttle Radar Topography Mission (SRTM) data and Sentinel-2 multispectral imagery from a user-defined time and area of interest into GEE. Second, SRTM with the feature attributes from Sentinel-2 multispectral imagery is generated and used as input data in support vector machine classification algorithm. Third, the inverse probability weighted interpolation (IPWI) approach uses 12 fixed GCPs as additional input data to assign the probability to each pixel of the image and generate corrected SRTM elevations. Fourth, gridding the enhanced DEM consists of regular points (E, N and H), and the contour interval is 5 m. Finally, densification of enhanced DEM data with GCPs is obtained using global positioning system technique through spatial interpolations such as Kriging, inverse distance weighted, modified Shepard’s method and triangulation with linear interpolation techniques.

Findings

The results were compared to a 1-m vertically accurate reference DEM (RD) obtained by image matching with Worldview-1 stereo satellite images. The results of this study demonstrated that the root mean square error (RMSE) of the original SRTM DEM was 5.95 m. On the other hand, the RMSE of the estimated elevations by the IPWI approach has been improved to 2.01 m, and the generated DEM by Kriging technique was 1.85 m, with a reduction of 68.91%.

Originality/value

A comparison with the RD demonstrates significant SRTM improvements. The suggested method clearly reduces the elevation error of the original SRTM DEM.

1 – 10 of 722