Search results

1 – 10 of 148
Article
Publication date: 8 November 2023

Marcus Achenbach and Guido Morgenthal

The design check regarding the fire resistance of concrete slabs can be easily performed using tabulated values. These tables are based on experimental results, but the level of…

Abstract

Purpose

The design check regarding the fire resistance of concrete slabs can be easily performed using tabulated values. These tables are based on experimental results, but the level of safety, which is obtained by this approach, is not known. On the other hand, performance-based methods are more accepted, but require a target reliability as performance criterion. Hence, there is a need for calibration of the performance-based methods using the results of the “traditional” descriptive approach.

Design/methodology/approach

The calibration is performed for a single span concrete slab, where the axis distance of the reinforcement is chosen according to Eurocode 2 for a defined fire rating. A “standard” compartment is selected to cover typical fields of application. The opening factor is considered as parameter to obtain the maximum peak temperatures in the compartment. A Monte Carlo simulation, in combination with a response surface method, is set up to calculate the probabilities of failure.

Findings

The results indicate that the calculated reliability index for a standard is within the range, which has been used for the derivation of safety and combination factors in the Eurocodes. It can be observed that members designed for a fire rating R90 have a significant increase in the structural safety for natural fires compared to a design for a fire rating R30.

Originality/value

The level of safety, which is obtained by a design based on tabulated values, is quantified for concrete slabs. The results are a necessary input for the calibration of performance-based methods and could stimulate discussions among scientists and building authorities.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 July 2023

Ying Lu, Yunxuan Deng and Shuqi Sun

Metro stations have become a crucial aspect of urban rail transportation, integrating facilities, equipment and pedestrians. Impractical physical layout designs and pedestrian…

Abstract

Purpose

Metro stations have become a crucial aspect of urban rail transportation, integrating facilities, equipment and pedestrians. Impractical physical layout designs and pedestrian psychology impact the effectiveness of an evacuation during a metro fire. Prior research on emergency evacuation has overlooked the complexity of metro stations and failed to adequately consider the physical heterogeneity of stations and pedestrian psychology. Therefore, this study aims to develop a comprehensive evacuation optimization strategy for metro stations by applying the concept of design for safety (DFS) to an emergency evacuation. This approach offers novel insights into the management of complex systems in metro stations during emergencies.

Design/methodology/approach

Physical and social factors affecting evacuations are identified. Moreover, the social force model (SFM) is modified by combining the fire dynamics model (FDM) and considering pedestrians' impatience and panic psychology. Based on the Nanjing South Metro Station, a multiagent-based simulation (MABS) model is developed. Finally, based on DFS, optimization strategies for metro stations are suggested.

Findings

The most effective evacuation occurs when the width of the stairs is 3 meters and the transfer corridor is 14 meters. Additionally, a luggage disposal area should be set up. The exit strategy of the fewest evacuees is better than the nearest-exit strategy, and the staff in the metro station should guide pedestrians correctly.

Originality/value

Previous studies rarely consider metro stations as sociotechnical systems or apply DFS to proactively reduce evacuation risks. This study provides a new perspective on the evacuation framework of metro stations, which can guide the designers and managers of metro stations.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 June 2024

Chris Bevan

Property guardianship is increasingly being viewed as an alternative and, in many cases, a last resort to the unaffordable private rental market. This upsurge in the incidence of…

Abstract

Purpose

Property guardianship is increasingly being viewed as an alternative and, in many cases, a last resort to the unaffordable private rental market. This upsurge in the incidence of guardianship necessarily amplifies the existing legal grey areas and the inherent insecurity and precarity in the sector for guardians. Drawing on interviews with property guardians and archival research, the purpose of this study is to explore the background to the guardianship occupation model; highlight the key problems guardianship generates and, building on this, propose recommendations for reform to the regulatory landscape of guardianship. This study argues that a culture change in property guardianship is needed so that guardians can be better protected, and local authorities empowered to be more proactive in overseeing standards of guardian properties in their areas.

Design/methodology/approach

This study draws on qualitative semi-structured interviews with 46 property guardians and archival research.

Findings

The author argues that property guardians routinely enter the sector largely as a matter of last resort based on financial considerations or following difficult life experiences. Insecure and precarious, guardianship operates under licence agreements which provide less protection for guardians. Coupled with ambiguity around the application of existing housing legislation to guardianship and research showing non-engagement by local authorities with guardianship, this study suggests regulatory reform is urgently needed.

Originality/value

With traditional residential tenancies in the private rental sector increasingly unaffordable for many and guardianship becoming a viable alternative, this study argues for significant regulatory reform to the guardianship sector to ensure guardians are adequately protected under the law. This study presents a series of proposals to deliver a culture change in the sector.

Details

Journal of Property, Planning and Environmental Law, vol. 16 no. 3
Type: Research Article
ISSN: 2514-9407

Keywords

Article
Publication date: 23 August 2024

Behzad Abbasnejad, Sahar Soltani, Amirhossein Karamoozian and Ning Gu

This systematic literature review aims to investigate the application and integration of Industry 4.0 (I4.0) technologies in transportation infrastructure construction projects…

Abstract

Purpose

This systematic literature review aims to investigate the application and integration of Industry 4.0 (I4.0) technologies in transportation infrastructure construction projects focusing on sustainability pillars.

Design/methodology/approach

The study employs a systematic literature review approach, combining qualitative review and quantitative analysis of 142 academic articles published between 2011 and March 2023.

Findings

The findings reveal the dominance of Building Information Modelling (BIM) as a central tool for sustainability assessment, while other technologies such as blockchain and autonomous robotics have received limited attention. The adoption of I4.0 technologies, including Internet of Things (IoT) sensors, Augmented Reality (AR), and Big Data, has been prevalent for data-driven analyses, while Unmanned Aerial Vehicle (UAVs) and 3D printing are mainly being integrated either with BIM or in synergy with Artificial Intelligence (AI). We pinpoint critical challenges including high adoption costs, technical barriers, lack of interoperability, and the absence of standardized sustainability benchmarks.

Originality/value

This research distinguishes itself by not only mapping the current integration of I4.0 technologies but also by advocating for standardization and a synergistic human-technology collaborative approach. It offers tailored strategic pathways for diverse types of transportation infrastructure and different project phases, aiming to significantly enhance operational efficiency and sustainability. The study sets a new agenda for leveraging cutting-edge technologies to meet ambitious future sustainability and efficiency goals, making a compelling case for rethinking how these technologies are applied in the construction sector.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 27 November 2023

Maha Assad, Rami Hawileh, Ghada Karaki, Jamal Abdalla and M.Z. Naser

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Abstract

Purpose

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Design/methodology/approach

A three-dimensional (3D) finite element (FE) model is developed to predict the response of RC walls under fire and is validated through experimental tests on RC wall specimens subjected to fire conditions. The numerical model incorporates temperature-dependent properties of the constituent materials. Moreover, the validated model was used in a parametric study to inspect the effect of the fire scenario, reinforcement concrete cover, reinforcement ratio and configuration, and wall thickness on the thermal and structural behaviour of the walls subjected to fire.

Findings

The developed 3D FE model successfully predicted the response of experimentally tested RC walls under fire conditions. Results showed that the fire resistance of the walls was highly compromised under hydrocarbon fire. In addition, the minimum wall thickness specified by EC2 may not be sufficient to achieve the desired fire resistance under considered fire scenarios.

Originality/value

There is limited research on the performance of RC walls exposed to fire scenarios. The study contributed to the current state-of-the-art research on the behaviour of RC walls of different concrete types exposed to fire loading, and it also identified the factors affecting the fire resistance of RC walls. This guides the consideration and optimisation of design parameters to improve RC walls performance in the event of a fire.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 September 2024

M. Vishal, K.S. Satyanarayanan, M. Prakash, Rakshit Srivastava and V. Thirumurugan

At this moment, there is substantial anxiety surrounding the fire safety of huge reinforced concrete (RC) constructions. The limitations enforced by test facilities, technology…

Abstract

Purpose

At this moment, there is substantial anxiety surrounding the fire safety of huge reinforced concrete (RC) constructions. The limitations enforced by test facilities, technology, and high costs have significantly limited both full-scale and scaled-down structural fire experiments. The behavior of an individual structural component can have an impact on the entire structural system when it is connected to it. This paper addresses the development and testing of a self-straining preloading setup that is used to perform thermomechanical action in RC beams and slabs.

Design/methodology/approach

Thermomechanical action is a combination of both structural loads and a high-temperature effect. Buildings undergo thermomechanical action when it is exposed to fire. RC beams and slabs are one of the predominant structural members. The conventional method of testing the beams and slabs under high temperatures will be performed by heating the specimens separately under the desired temperature, and then mechanical loading will be performed. This gives the residual strength of the beams and slabs under high temperatures. This method does not show the real-time behavior of the element under fire. In real-time, a fire occurs simultaneously when the structure is subjected to desired loads and this condition is called thermomechanical action. To satisfy this condition, a unique self-training test setup was prepared. The setup is based on the concept of a prestressing condition where the load is applied through the bolts.

Findings

To validate the test setup, two RC beams and slabs were used. The test setup was tested in service load range and a temperature of 300 °C. One of the beams and slabs was tested conventionally with four-point bending and point loading on the slab, and another beam and slab were tested using the preloading setup. The results indicate the successful operation of the developed self-strain preloading setup under thermomechanical action.

Research limitations/implications

Gaining insight into the unpredictable reaction of structural systems to fire is crucial for designing resilient structures that can withstand disasters. However, comprehending the instantaneous behavior might be a daunting undertaking as it necessitates extensive testing resources. Therefore, a thorough quantitative and qualitative numerical analysis could effectively evaluate the significance of this research.

Originality/value

The study was performed to validate the thermomechanical load setup for beams and slabs on a single-bay single-storey RC frame with and without slab under various fire possible scenarios. The thermomechanical load setup for RC members is found to be scarce.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 December 2023

T.M. Jeyashree and P.R. Kannan Rajkumar

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to…

Abstract

Purpose

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to elevated temperatures during a fire. The fire response of prestressed hollow-core slabs is required to develop slabs with greater fire endurance. The present study aims to determine the extent to which the hollow-core slab can sustain load during a fire without undergoing progressive collapse under extreme fire and heating scenarios.

Design/methodology/approach

A finite element model was generated to predict the fire response of prestressed hollow core slabs under elevated temperatures. The accuracy of the model was predicted by examining thermal and structural responses through coupled temperature displacement analysis. A sensitivity analysis was performed to study the effects of concrete properties on prediction of system response. A parametric study was conducted by varying the thickness of the slab, fire and heating scenarios.

Findings

Thermal conductivity and specific heat of concrete were determined as sensitive parameters. The thickness of the slab was identified as a critical factor at a higher load level. Asymmetric heating of the slab resulted in higher fire resistance compared with symmetric heating.

Originality/value

This is the first study focused on studying the effect of modeling uncertainties on the system response by sensitivity analysis under elevated temperatures. The developed model with a parametric study helps in identifying critical factors for design purposes.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 17 September 2024

Juliette I. Franqueville, James G. Scott and Ofodike A. Ezekoye

The COVID-19 pandemic dramatically affected the fire service: stay-at-home orders and potential exposure hazards disrupted standard fire service operations and incident patterns…

Abstract

Purpose

The COVID-19 pandemic dramatically affected the fire service: stay-at-home orders and potential exposure hazards disrupted standard fire service operations and incident patterns. The ability to predict incident volume during such disruptions is crucial for dynamic and efficient staff allocation planning. This work proposes a model to quantify the relationship between the increase in “residential mobility” (i.e. time spent at home) due to COVID-19 and fire and emergency medical services (EMS) call volume at the onset of the pandemic (February – May 2020). Understanding this relationship is beneficial should mobility disruptions of this scale occur again.

Design/methodology/approach

The analysis was run on 56 fire departments that subscribe to the National Fire Operations Reporting System (NFORS). This platform enables fire departments to report and visualize operational data. The model consists of a Bayesian hierarchical model. Text comments reported by first responders were also analyzed to provide additional context for the types of incidents that drive the model’s results.

Findings

Overall, a 1% increase in residential mobility (i.e. time spent at home) was associated with a 1.43% and 0.46% drop in EMS and fire call volume, respectively. Around 89% and 21% of departments had a significant decrease in EMS and fire call volume, respectively, as time spent at home increased.

Originality/value

A few papers have investigated the impact of COVID-19 on fire incidents in a few locations, but none have covered an extensive number of fire departments. Additionally, no studies have investigated the relationship between mobility and fire department call volumes.

Details

International Journal of Emergency Services, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2047-0894

Keywords

Article
Publication date: 10 November 2023

Varun Sabu Sam, M.S. Adarsh, Garry Robson Lyngdoh, Garry Wegara K. Marak, N. Anand, Khalifa Al-Jabri and Diana Andrushia

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical…

Abstract

Purpose

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical properties of steel under fire conditions. It is known that structural steel loses strength and stiffness as temperature increases, particularly above 400 °C. The duration of time in which steel is exposed to high temperatures also has an impact on how much strength it loses. The time-dependent response of steel is critical when estimating load carrying capacity of steel columns exposed to fire. Thus, investigating the structural response of cold-formed steel (CFS) columns is gaining more interest due to the nature of such structural elements.

Design/methodology/approach

In this study, experiments were conducted on two CFS configurations: back-to-back (B-B) channel and toe-to-toe (T-T) channel sections. All CFS column specimens were exposed to different temperatures following the standard fire curve and cooled by air or water. A total of 14 tests were conducted to evaluate the capacity of the CFS sections. The axial resistance and yield deformation were noted for both section types at elevated temperatures. The CFS column sections were modelled to simulate the section's behaviour under various temperature exposures using the general-purpose finite element (FE) program ABAQUS. The results from FE modelling agreed well with the experimental results. Ultimate load of experiment and finite element model (FEM) are compared with each other. The difference in percentage and ratio between both are presented.

Findings

The results showed that B-B configuration showed better performance for all the investigated parameters than T-T sections. A noticeable loss in the ultimate strength of 34.5 and 65.6% was observed at 90 min (986℃) for B-B specimens cooled using air and water, respectively. However, the reduction was 29.9 and 46% in the T-T configuration, respectively.

Originality/value

This research paper focusses on assessing the buckling strength of heated CFS sections to analyse the mode of failure of CFS sections with B-B and T-T design configurations under the effect of elevated temperature.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 November 2023

Dravesh Yadav, Ravi Sastri Ayyagari and Gaurav Srivastava

This paper numerically investigates the effect of cavity radiation on the thermal response of hollow aluminium tubes and facade systems subjected to fire.

Abstract

Purpose

This paper numerically investigates the effect of cavity radiation on the thermal response of hollow aluminium tubes and facade systems subjected to fire.

Design/methodology/approach

Finite element simulations were performed using ABAQUS 6.14. The accuracy of the numerical model was established through experimental and numerical results available in the literature. The proposed numerical model was utilised to study the effect of cavity radiation on the thermal response of aluminium hollow tubes and facade system. Different scenarios were considered to assess the applicability of the commonly used lumped capacitance heat transfer model.

Findings

The effects of cavity radiation were found to be significant for non-uniform fire exposure conditions. The maximum temperature of a hollow aluminium tube with 1-sided fire exposure was found to be 86% greater when cavity radiation was considered. Further, the time to attain critical temperature under non-uniform fire exposure, as calculated from the conventional lumped heat capacity heat transfer model, was non-conservative when compared to that predicted by the proposed simulation approach considering cavity radiation. A metal temperature of 550 °C was attained about 18 min earlier than what was calculated by the lumped heat capacitance model.

Research limitations/implications

The present study will serve as a basis for the study of the effects of cavity radiation on the thermo-mechanical response of aluminium hollow tubes and facade systems. Such thermo-mechanical analyses will enable the study of the effects of cavity radiation on the failure mechanisms of facade systems.

Practical implications

Cavity radiation was found to significantly affect the thermal response of hollow aluminium tubes and façade systems. In design processes, it is essential to consider the potential consequences of non-uniform heating situations, as they can have a significant impact on the temperature of structures. It was also shown that the use of lumped heat capacity heat transfer model in cases of non-uniform fire exposure is unsuitable for the thermal analysis of such systems.

Originality/value

This is the first detailed investigation of the effects of cavity radiation on the thermal response of aluminium tubes and façade systems for different fire exposure conditions.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 148