Search results

1 – 10 of over 1000
Article
Publication date: 1 January 2024

Masoud Parsi, Vahid Baradaran and Amir Hossein Hosseinian

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of…

Abstract

Purpose

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of offshore projects and their environmental-degrading effects have been embraced as well. The durations of activities are uncertain in this model. The developed formulation is tri-objective that seeks to minimize the expected time, total cost and CO2 emission of all projects.

Design/methodology/approach

A new version of the multiobjective multiagent optimization (MOMAO) algorithm has been proposed to solve the amalgamated model. To empower the MOMAO, various procedures of this algorithm have been modified based on the multiattribute utility theory (MAUT) technique. Along with the MOMAO, this study has employed four other meta-heuristic methodologies to solve the model as well.

Findings

The outputs of the MOMAO have been put to test against four other optimizers in terms of convergence, diversity, uniformity and computation times. The results of the Mean Ideal Distance (MID) metric have revealed that the MOMAO has strongly prevailed its rival optimizers. In terms of diversity of the acquired solutions, the MOMAO has ranked the first among all employed optimizers since this algorithm has offered the best solutions in 56.66 and 63.33% of the test problems regarding the diversification metric and hyper-volume metrics. Regarding the uniformity of results, which is measured through the spacing metric (SP), the MOMAO has presented the best SP values in more than 96% of the test problems. The MOMAO has needed more computation times in comparison to its rivals.

Practical implications

A real case study comprising two concurrent offshore projects has been offered. The proposed formulation and the MOMAO have been implemented for this case study, and their effectiveness has been appraised.

Originality/value

Very few studies have focused on presenting an integrated formulation for the stochastic multiproject scheduling and material ordering problems. The model embraces some of the characteristics of the offshore projects which have not been adequately studied in the literature. Limited capacities of the offshore platforms and cargo vessels have been embedded in the proposed model. The offshore platforms have spatial limitations in storing the required materials. The vessels are also capacitated and they also have limited shipment capacities. Some of the required materials need to be transported from the base to the offshore platform via a fleet of cargo vessels. The workforces and equipment can become idle on the offshore platform due to material shortage. Various offshore-related costs have been integrated as a minimization objective function in the model. The cargo vessels release CO2 detrimental emissions to the environment which are sought to be minimized in the developed formulation. To the best of the authors' knowledge, the MOMAO has not been sufficiently employed as a solution methodology for the stochastic multiproject scheduling and material ordering problems.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 February 2023

Ganesh Thapa, Dyutiman Choudhary, Narayan Prasad Khanal and Shriniwas Gautam

Farmers in developing countries are used to recycling and purchasing seeds of old and low-yielding varieties, leading to low seed and varietal replacement rates. Seed companies in…

Abstract

Purpose

Farmers in developing countries are used to recycling and purchasing seeds of old and low-yielding varieties, leading to low seed and varietal replacement rates. Seed companies in Nepal have started to conduct traders' meetings (TMs) to promote new rice varieties. This paper aims to assess the effectiveness of this approach in promoting new rice varieties.

Design/methodology/approach

The authors assess the effectiveness of TMs by surveying 238 agrodealers from 7 districts of Nepal. The authors used the binary logit model to study the determinants of participation in TM and an instrumental variable approach to estimate the impact of TMs on sales of the promoted rice varieties.

Findings

Results indicate that the TM significantly influences traders' knowledge and increases the probability of selling new rice varieties promoted. However, TMs did not significantly increase the overall sales of promoted rice varieties.

Research limitations/implications

The study is based on cross-section data; thus, unobserved fixed effects could not be accounted for. The study finds only one relevant and valid instrumental variable and therefore could not conduct any exogeneity test.

Originality/value

Seed companies in Nepal started to conduct TMs to promote new rice varieties since 2019. However, to the best of the authors’ knowledge, the usefulness of TMs and the impact of these events in changing traders' attitudes toward domestic rice seed varieties or in business performance (annual sales of the promoted varieties) have not been assessed. Therefore, the study findings will help to promote the market-driven seed system and increase the seed replacement rate.

Details

Journal of Agribusiness in Developing and Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-0839

Keywords

Article
Publication date: 26 December 2023

Farshad Peiman, Mohammad Khalilzadeh, Nasser Shahsavari-Pour and Mehdi Ravanshadnia

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the…

Abstract

Purpose

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the accuracy and actualization of predicted values. This study primarily aimed to examine natural gradient boosting (NGBoost-2020) with the classification and regression trees (CART) base model (base learner). To the best of the authors' knowledge, this concept has never been applied to EVM AD forecasting problem. Consequently, the authors compared this method to the single K-nearest neighbor (KNN) method, the ensemble method of extreme gradient boosting (XGBoost-2016) with the CART base model and the optimal equation of EVM, the earned schedule (ES) equation with the performance factor equal to 1 (ES1). The paper also sought to determine the extent to which the World Bank's two legal factors affect countries and how the two legal causes of delay (related to institutional flaws) influence AD prediction models.

Design/methodology/approach

In this paper, data from 30 construction projects of various building types in Iran, Pakistan, India, Turkey, Malaysia and Nigeria (due to the high number of delayed projects and the detrimental effects of these delays in these countries) were used to develop three models. The target variable of the models was a dimensionless output, the ratio of estimated duration to completion (ETC(t)) to planned duration (PD). Furthermore, 426 tracking periods were used to build the three models, with 353 samples and 23 projects in the training set, 73 patterns (17% of the total) and six projects (21% of the total) in the testing set. Furthermore, 17 dimensionless input variables were used, including ten variables based on the main variables and performance indices of EVM and several other variables detailed in the study. The three models were subsequently created using Python and several GitHub-hosted codes.

Findings

For the testing set of the optimal model (NGBoost), the better percentage mean (better%) of the prediction error (based on projects with a lower error percentage) of the NGBoost compared to two KNN and ES1 single models, as well as the total mean absolute percentage error (MAPE) and mean lags (MeLa) (indicating model stability) were 100, 83.33, 5.62 and 3.17%, respectively. Notably, the total MAPE and MeLa for the NGBoost model testing set, which had ten EVM-based input variables, were 6.74 and 5.20%, respectively. The ensemble artificial intelligence (AI) models exhibited a much lower MAPE than ES1. Additionally, ES1 was less stable in prediction than NGBoost. The possibility of excessive and unusual MAPE and MeLa values occurred only in the two single models. However, on some data sets, ES1 outperformed AI models. NGBoost also outperformed other models, especially single models for most developing countries, and was more accurate than previously presented optimized models. In addition, sensitivity analysis was conducted on the NGBoost predicted outputs of 30 projects using the SHapley Additive exPlanations (SHAP) method. All variables demonstrated an effect on ETC(t)/PD. The results revealed that the most influential input variables in order of importance were actual time (AT) to PD, regulatory quality (RQ), earned duration (ED) to PD, schedule cost index (SCI), planned complete percentage, rule of law (RL), actual complete percentage (ACP) and ETC(t) of the ES optimal equation to PD. The probabilistic hybrid model was selected based on the outputs predicted by the NGBoost and XGBoost models and the MAPE values from three AI models. The 95% prediction interval of the NGBoost–XGBoost model revealed that 96.10 and 98.60% of the actual output values of the testing and training sets are within this interval, respectively.

Research limitations/implications

Due to the use of projects performed in different countries, it was not possible to distribute the questionnaire to the managers and stakeholders of 30 projects in six developing countries. Due to the low number of EVM-based projects in various references, it was unfeasible to utilize other types of projects. Future prospects include evaluating the accuracy and stability of NGBoost for timely and non-fluctuating projects (mostly in developed countries), considering a greater number of legal/institutional variables as input, using legal/institutional/internal/inflation inputs for complex projects with extremely high uncertainty (such as bridge and road construction) and integrating these inputs and NGBoost with new technologies (such as blockchain, radio frequency identification (RFID) systems, building information modeling (BIM) and Internet of things (IoT)).

Practical implications

The legal/intuitive recommendations made to governments are strict control of prices, adequate supervision, removal of additional rules, removal of unfair regulations, clarification of the future trend of a law change, strict monitoring of property rights, simplification of the processes for obtaining permits and elimination of unnecessary changes particularly in developing countries and at the onset of irregular projects with limited information and numerous uncertainties. Furthermore, the managers and stakeholders of this group of projects were informed of the significance of seven construction variables (institutional/legal external risks, internal factors and inflation) at an early stage, using time series (dynamic) models to predict AD, accurate calculation of progress percentage variables, the effectiveness of building type in non-residential projects, regular updating inflation during implementation, effectiveness of employer type in the early stage of public projects in addition to the late stage of private projects, and allocating reserve duration (buffer) in order to respond to institutional/legal risks.

Originality/value

Ensemble methods were optimized in 70% of references. To the authors' knowledge, NGBoost from the set of ensemble methods was not used to estimate construction project duration and delays. NGBoost is an effective method for considering uncertainties in irregular projects and is often implemented in developing countries. Furthermore, AD estimation models do fail to incorporate RQ and RL from the World Bank's worldwide governance indicators (WGI) as risk-based inputs. In addition, the various WGI, EVM and inflation variables are not combined with substantial degrees of delay institutional risks as inputs. Consequently, due to the existence of critical and complex risks in different countries, it is vital to consider legal and institutional factors. This is especially recommended if an in-depth, accurate and reality-based method like SHAP is used for analysis.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 June 2023

Diana Salhab, Søren Munch Lindhard and Farook Hamzeh

Compressing the schedule by using overlapping activities is a commonly adopted approach for accelerating projects. However, this approach might channel a variety of risks into the…

Abstract

Purpose

Compressing the schedule by using overlapping activities is a commonly adopted approach for accelerating projects. However, this approach might channel a variety of risks into the construction processes. Risks imply waste; still, evaluating the effects of using overlapping activities on schedule quality has been a looming gap in construction research. Therefore, this paper aims to study the quality of overlapping in terms of emerging waste and to demarcate the boundaries of the overlapping envelope.

Design/methodology/approach

This study presents a method for assessing the consequences of implementing overlapping activities in a schedule on two types of waste namely waiting time and variation gap. A critical path method (CPM) network including eleven activities is modeled stochastically where the durations of individual activities are sampled as beta-distributions. Using program evaluation and review technique (PERT) assumptions to calculate the schedule dates, the network is simulated for various amounts of overlapping and the corresponding waste is quantified each time.

Findings

Results show that not only the returns on overlapping are diminishing after a certain overlap percentage, but also waste in the production system increases. Particularly, results reveal that compressing the schedule leads to a decrease in variation gaps, but at the same time, it leads to a larger increase in waiting times, which creates more waste.

Originality/value

The presented study shows through simulation how overlapping activities affects productivity by identifying wastes. It shows that despite the apparent gains, overlaps should be used with caution, and while considering the side-effects of increased waste which introduces a need for increased managerial awareness.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 January 2024

Mohamed Marzouk and Dina Hamdala

The aggressive competition in the real estate market forces real estate developers to tackle the challenge of selecting the best project construction phasing alternative. The real…

107

Abstract

Purpose

The aggressive competition in the real estate market forces real estate developers to tackle the challenge of selecting the best project construction phasing alternative. The real estate industry is characterized by high costs, high profit and high risks. The schedules of real estate projects are also characterized by having large number of repetitive activities that are executed over a long duration. The repetitiveness, long duration of execution, the high amounts of money involved and the high risk made it desirable to leverage the impact of changes in phasing plans on net present value of amounts incurred and received over the long execution and selling duration. This also changes the project progress, and delivery time as well as their respective impact on customer degree of satisfaction. This research addresses the problem of selecting the best phasing alternative for real estate development projects while maximizing customer satisfaction and project profit.

Design/methodology/approach

The research proposes a model that generates all construction phasing alternatives and performs decision-making to rank all possible phasing alternatives. The proposed model consists of five modules: (1) Phasing Sequencing module, (2) Customer Satisfaction module, (3) Cash-In calculation module, (4) Cost Estimation module and (5) Decision-making module. A case study was presented to demonstrate the practicality of the model.

Findings

The proposed model satisfies the real estate market's need for proper construction phasing plans evaluation and selection against the project's main success criteria, customer satisfaction and project profit. The proposed model generates all construction phasing alternatives and performs multi-criteria decision making to rank all possible phasing alternatives. It quantifies the score of the two previously mentioned criteria and ranks all solutions according to their overall score.

Research limitations/implications

The research proposes a model that assist real estate market's need for proper construction phasing plans evaluation and selection against the project's main success criteria, customer satisfaction and project profit. The proposed model can be used to conclude general guidelines and common successful practices to be used by real estate developers when deciding the construction phasing plan. In this study the model is based on business models where all the project units are sold, rental cases are not considered. Also, the budget limitations that might exist when phasing is not considered in the model computations.

Originality/value

The model can be used as a complete platform that can hold all real estate project data, process revenues and cost information for estimating profit, plotting cash flow profiles, quantifying the degree of customer satisfaction attributable to each phasing alternative and providing recommendation showing the best one. The model can be used to conclude general guidelines and common successful practices to be used by real estate developers when tackling the challenge of selecting construction phasing plans.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 21 March 2024

Sugandh Ahuja, Shveta Singh and Surendra Singh Yadav

The purpose of this study is to examine the differential impact of qualitative and quantitative informational signals within the merger and acquisition (M&A) press releases on…

Abstract

Purpose

The purpose of this study is to examine the differential impact of qualitative and quantitative informational signals within the merger and acquisition (M&A) press releases on deal completion and duration. A significant percentage of deals by emerging market acquirers get abandoned before completion, and those that are completed have a longer duration. The limited information about the operations of acquirers from emerging markets creates suspicion among the stakeholders involved in deal resolution, hindering the completion of deals. Thus, using the signal-feedback paradigm, authors investigate how informational signals in the M&A press release impact the deal resolution.

Design/methodology/approach

The study employs content analysis on M&A press releases announced by firms from five emerging economies: Brazil, Russia, India, China and South Africa. The technique is applied based on the exploration-exploitation framework developed by March (1991) to categorize the announced deal motives (qualitative information). Next, the authors identify the percentage of relevant quantitative information disclosed in the press release, following which results are obtained using logistic and ordinary least square regressions.

Findings

The study reports that deals with declared exploratory motives take longer to complete. Additionally, deals disclosing higher percentage of quantitative disclosure exhibit lower completion rate and increased deal duration.

Originality/value

This is the first study to provide evidence that familiarity bias impacts deal duration as relative to exploitation deals that are familiar to the stakeholders; exploratory deals take longer to conclude. Further, our analysis indicates that a greater percentage of quantitative disclosure may not always reduce information risk but rather be interpreted negatively in the form of the acquirer’s overconfidence in the deal’s potential.

Details

Review of Behavioral Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1940-5979

Keywords

Article
Publication date: 29 December 2022

Zhenmin Yuan, Yuan Chang, Yunfeng Chen, Yaowu Wang, Wei Huang and Chen Chen

Precast wall lifting during prefabricated building construction faces multiple non-lean problems, such as inaccurate lifting-time estimation, unreasonable resource allocation and…

Abstract

Purpose

Precast wall lifting during prefabricated building construction faces multiple non-lean problems, such as inaccurate lifting-time estimation, unreasonable resource allocation and improper process design. This study aims to identify the pathways for improving lifting performance to advance lean construction of prefabricated buildings.

Design/methodology/approach

This study developed a methodological framework that integrates the discrete event simulation method, the elimination, combination, rearrangement and simplification (ECRS) technique and intelligent optimization tool. Two schemes of precast wall lifting, namely, the enterprise's business as usual (BAU) and enterprise-leading (EL) schemes, were set to benchmark lifting performance. Furthermore, a best-practice (BP) scheme was modeled from the perspective of lifting activity ECRS and resource allocation for performance optimization.

Findings

A real project was selected to test the effect of the methodological framework. The results showed that compared with the EL scheme, the BP scheme reduced the total lifting time (TLT) by 6.3% and mitigated the TLT uncertainty (the gap between the maximum and minimum time values) by 20.6%. Under the BP scheme, increasing the resource inputs produces an insignificant effect in reducing TLT, i.e. increasing the number of component operators in the caulking subprocess from one to two only shortened the TLT by 3.6%, and no further time reduction was achieved as more component operators were added.

Originality/value

To solve non-lean problems associated with prefabricated building construction, this study provides a methodological framework that can separate a typical precast wall lifting process into fine-level activities. Besides, it also identifies the pathways (including the learning effect mitigation, labor and machinery resource adjustment and activities’ improvement) to reducing TLT and its uncertainty.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 July 2023

Maszura Abdul Ghafar and Rahinah Ibrahim

This paper discussed quantifying architect, engineer and contractor (AEC) professionals' cross-work culture productivity by comparing between Malaysian and United Kingdom (UK…

Abstract

Purpose

This paper discussed quantifying architect, engineer and contractor (AEC) professionals' cross-work culture productivity by comparing between Malaysian and United Kingdom (UK) projects during industrialized building project delivery. This study addressed the second part of a mixed method research design study.

Design/methodology/approach

This study hypothesized that with understanding of cultural work knowledge between professionals during design phase coupled with competent technological support, productivity can be improved. It utilized Cognitive Organizational Theory (COT) protocols to test conceptual models in SimVision®. Organizational structure, project intensity, and statistical validations parameters were performed to obtain the reliability and generalization of the result.

Findings

This study found that with Building Information Modeling (BIM) technology intervention, the handling of exception, coordination and decision-making time could be improved, resulting in better project performances. The result also indicated that in choosing organizational fit, national culture factor needed to be considered; otherwise, organizational change would be unacceptable. By changing the operational process from intensive to reciprocal task intensity with BIM technology intervention, the effect on productivity would be similar to changing hierarchical organizational structure to flatter organizational structure.

Research limitations/implications

Project discrepancies issues are limitedly discussed due to companies' confidentiality. The paper only focuses on understanding the effects of human factors during the integrated project delivery phase.

Practical implications

The findings could support developing countries' professionals to collaborate effectively with developed countries' professionals.

Originality/value

The development of the project's cultural knowledge experimentations will provide guidance to teams involved in international projects from developed and developing countries in pursuing joint ventures in project deliveries in either country successfully.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 19 January 2023

Hamidreza Golabchi and Ahmed Hammad

Existing labor estimation models typically consider only certain construction project types or specific influencing factors. These models are focused on quantifying the total…

Abstract

Purpose

Existing labor estimation models typically consider only certain construction project types or specific influencing factors. These models are focused on quantifying the total labor hours required, while the utilization rate of the labor during the project is not usually accounted for. This study aims to develop a novel machine learning model to predict the time series of labor resource utilization rate at the work package level.

Design/methodology/approach

More than 250 construction work packages collected over a two-year period are used to identify the main contributing factors affecting labor resource requirements. Also, a novel machine learning algorithm – Recurrent Neural Network (RNN) – is adopted to develop a forecasting model that can predict the utilization of labor resources over time.

Findings

This paper presents a robust machine learning approach for predicting labor resources’ utilization rates in construction projects based on the identified contributing factors. The machine learning approach is found to result in a reliable time series forecasting model that uses the RNN algorithm. The proposed model indicates the capability of machine learning algorithms in facilitating the traditional challenges in construction industry.

Originality/value

The findings point to the suitability of state-of-the-art machine learning techniques for developing predictive models to forecast the utilization rate of labor resources in construction projects, as well as for supporting project managers by providing forecasting tool for labor estimations at the work package level before detailed activity schedules have been generated. Accordingly, the proposed approach facilitates resource allocation and enables prioritization of available resources to enhance the overall performance of projects.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 15 May 2023

Alolote I. Amadi

Using Nigeria, as a point of reference, this study aims to explore the applicability of climatic variables as analytically valid factors for conceptual cost estimation. This is in…

Abstract

Purpose

Using Nigeria, as a point of reference, this study aims to explore the applicability of climatic variables as analytically valid factors for conceptual cost estimation. This is in view of the vastness and topographical alignment of Nigeria's landmass, which makes it a country of extreme climatic variability from north to south. As construction costs in Nigeria, similarly, tend to show a north-south alignment, the study's objective is to establish cost-estimating relationships (CERs) between the variability of climatic elements and the variance in construction cost, to arouse interest in the concept.

Design/methodology/approach

Deploying correlation analysis and multiple regression analysis, significant associations/relationships between meteorological variables and building cost for selected locations, following a North-South transect of the major climatic zones, are sought, to explain climate-induced construction cost variance. Validation of the regression model was carried out using variance analysis and the Mean Absolute Percentage Error of a different dataset.

Findings

Climatic indices of atmospheric moisture exhibited strong direct and partial correlations with construction costs, while sunshine hours and temperature were inversely correlated. The study further establishes statistically significant CERs between climatic variables and building cost in Nigeria, which accounted for 47.9% of the variance in construction cost across the climatic zones.

Practical implications

The study outcome provides a statistically valid platform for the development of more elaborate analytical costing models, for prototype buildings to be cited in disparate climatic settings.

Originality/value

This study establishes the statistical validity of climatic variables in constituting CERs for predicting construction costs in disparate climatic settings.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 10 of over 1000