Search results

1 – 10 of over 17000
Article
Publication date: 3 June 2014

Alicja Laber

The purpose of this paper is to present the results of research into using an additive to SAE 15W/40 engine oil during operation and its influence on lubricating properties…

Abstract

Purpose

The purpose of this paper is to present the results of research into using an additive to SAE 15W/40 engine oil during operation and its influence on lubricating properties (normalised tests) on weld point Pz, non-seizure load Pn, load wear index Ih and on seizure load Pt. The friction pair consisted of a group of four balls and the tested lubricant. Moreover, the author tested the influence of an additive to engine oil (non-normalised tests) on tribological properties, including friction force, wear and the temperature of friction area for the C45 steel/210Cr12 steel friction joint. She also determined the influence of an additive to engine oil on the formation of the operating surface layer. The research results helped to build the model of the boundary layer that was formed as a result of adding an additive to engine oil.

Design/methodology/approach

The lubricant properties of engine oil and engine oil to which an additive was added during operation were determined according to PN-76/C-04147. The following are the indexes of lubricant properties: weld point Pz, load wear index Ih, non-seizure load Pn, seizure load and average scar diameter. The Pz, Pn and Ih indexes were determined at abruptly increasing load to the moment of welding of the friction pair. The Pt index was determined at the increasing load of the friction pair from 0 to 800 daN at the speed of 408.8 N/s. The tests of tribological properties (friction force, wear and the temperature of friction area) were conducted for the C45/210 Cr12 friction pair in the presence of a lubricant and a lubricant with an additive.

Findings

The modification of SAE 15W/40 engine oil with the additive added during operation resulted in improved indexes of lubricant properties Pz, Pn, Ih and Pt and average scar diameter. The boundary layer for the modified oil breaks after a longer time and at lesser friction force. The modification of the engine oil reduced the wear of the friction pair. After the friction process, element composition in the surface layer of the wear trace and its distribution were determined in relation to applied lubricants. A significant amount of sulphur, phosphorus and oxygen, as well as an insignificant amount of copper, was observed in the wear trace after the friction process in the presence of the lubricant medium. The distribution of elements in the wear trace when the engine oil with the additive was used is steady in the wear trace and outside it. Some sulphur, phosphorus and chlorine were found in the wear trace.

Originality/value

The results of tests on tribological properties (non-normalised tests) confirmed the positive affect of the additive to engine oil on lubricant properties (normalised tests). The modification of the engine oil caused reduced friction force and the reduced wear of the friction pair. The reduction of friction force and wear was the result of the formation of the surface of a greater amplitude density of unevenness tops in the friction process. Moreover, the operating surface layer, created in the friction process when the additive was added to the engine oil, had greater load participation at 50 per cent C. This operational surface layer improved tribological properties, i.e. it reduced value of friction force and wear. The test results were used to build a model of the boundary layer created as a result of the additive added to engine oil.

Details

Industrial Lubrication and Tribology, vol. 66 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 August 2009

Zhang Longhua

The purpose of this paper is to develop novel ashless additives and to meet the need for formulating ashless anti‐wear (AW) hydraulic fluid or other industrial lubricating oils…

Abstract

Purpose

The purpose of this paper is to develop novel ashless additives and to meet the need for formulating ashless anti‐wear (AW) hydraulic fluid or other industrial lubricating oils. This paper also aims to investigate the tribological behaviours and mechanism of an acrylate of dialkyl dithiophosphoric acid (ADDP), as an additive in some group I/II base oils compared with some traditional s‐p containing AW additives.

Design/methodology/approach

ADDP is synthesized in the laboratory. The chemical composition and structure of the lubricating additive are analyzed by means of infrared spectroscopy. Its extreme pressure (EP), AW and friction reduction properties as additive in base oils, compared with some traditional s‐p containing AW additives, are investigated using a four‐ball machine according to relative testing standards. The tribological mechanism is discussed according to the scanning electron microscope (SEM) analytical data.

Findings

The results indicate that the four‐ball PB value of the prepared ADDP in HVIWH650 is better than that of the IRGLUBE 353; the thermal stability of ADDP is equivalent to the zinc dialkyl dithiophosphate (ZDDP) and the SEM data show that the prepared ADDP additive could form a layer of uniform film on the worn surface serving as lubricant and protective film. This may be the chief reason why the prepared ADDP possesses better AW property than ZDDP.

Research limitations/implications

However, more experimental studies such as the synergic effect with other additives should be performed, from which it could be learned whether the novel AW additive would be applicable in industrial oils.

Practical implications

The results may be useful for the researchers to formulate some ashless industrial oils.

Originality/value

A novel additive was synthesized in the laboratory; it would find a promising industrial application as an ashless AW additive.

Details

Industrial Lubrication and Tribology, vol. 61 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 November 2006

Ertuğrul Durak, Cahit Kurbanoğlu and Recai Fatih Tunay

In this study, an attempt is made to show the linkage between the oil additive and journal bearing the running conditions such as temperature, load, speed, etc. in effecting…

Abstract

Purpose

In this study, an attempt is made to show the linkage between the oil additive and journal bearing the running conditions such as temperature, load, speed, etc. in effecting lubricating. It is well known that öne of the roles of additives is to form protective layer to reduce friction coeffıcient in lubricated contacts.

Design/methodology/approach

The tests were performed at three different loads, and eight speeds. The tests were carried out for three different commercial additives that are concentration ratio of 3 per cent.

Findings

The test results of the experimental coeffıcient of friction were graphically presented. The highest reduction in the friction coeffıcient was obtained at high temperature (100°C) in the tests than room temperature (25°C) tests.

Research limitations/implications

In this study, effects of commercial oil additives on the friction coefficîent in the journal bearing under statically loaded have been studied experimentally at 25 and 100°C temperatures.

Practical implications

Lubricating oils find applications in engines, industrial uses, greases and automotive transmissions. The majör uses of these oils are in engines (55 per cent), industry (27 per cent), processes (9 per cent), greases (5 per cent) and automotive transmissions (4 per cent). Lubricants perform a variety of functions in automotive application. One of the important functions is to reduce friction and wear in movîng machinery.

Originality/value

Generally, by adding additives to engine oil the lower friction coeffıcient were observed comparison engine oil both at 25 and 100°C temperatures. But, the smallest friction coefficient was obtained in the tests at 100°C comparison with the tests at 25°C in the additive addition to engine oil tests.

Details

Industrial Lubrication and Tribology, vol. 58 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 August 2009

Hua Wu and Tian Ren

The purpose of this paper is to study tribological properties of two novel additives in the diester and provide adequate information on the relationship between the diester and…

Abstract

Purpose

The purpose of this paper is to study tribological properties of two novel additives in the diester and provide adequate information on the relationship between the diester and the additives.

Design/methodology/approach

The two 2‐mercaptobenzothiazole derivatives, referred to as BZIA, BZOA, are synthesized with one pot; their tribological performances are evaluated using a four‐ball friction and wear tester, and the worn surface was analysed with scanning electron microscope and X‐ray photoelectron spectroscopy (XPS).

Findings

The two compounds as the additives in the diester possess excellent load‐carrying capacities, rather good anti‐wear (AW) and friction reduction properties. According to the XPS results, both the additives reacted with counter‐face metal and generated a sulphur‐containing inorganic film and a complex adsorption film. The inorganic film obtained with the additive BZOA consisted of FeS2, FeSO4 and Fe2(SO4)3, whereas the inorganic film obtained with the additive BZIA consisted of FeS2 or FeS. The adsorption layer for the two additives contained N‐containing compounds.

Research limitations/implications

The interaction of the two additives with the diester needs to be further explored.

Practical implications

Two useful, environmentally friendly, AW lubricating oil additives are synthesized with one pot.

Originality/value

The paper provides a study of some N, S‐containing heterocyclic compounds as environmentally friendly lubricating oil additives.

Details

Industrial Lubrication and Tribology, vol. 61 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 26 May 2023

Soumya Ranjan Guru, Chetla Venugopal and Mihir Sarangi

This study aims to investigate the behavior of vegetable oil with two additives. Base oil’s tribological qualities can be improved with the help of several additions. In the…

Abstract

Purpose

This study aims to investigate the behavior of vegetable oil with two additives. Base oil’s tribological qualities can be improved with the help of several additions. In the present investigation, soybean oil is served as the foundational oil due to its eco-friendliness and status as a vegetable oil with two additives, named polytetrafluoroethylene (PTFE) and molybdenum disulfide (MoS2).

Design/methodology/approach

As additives, PTFE and MoS2 are used; PTFE is renowned for its anti-friction (AF) properties, while MoS2 is a solid lubricant with anti-wear (AW) properties. This investigation examines the synergistic impact of AF and AW additions in vegetable oil. The lubricity of the base oil is measured by using a four-ball tester, and the wear properties of the oil at different additive amounts are determined by using a universal tribometer.

Findings

PTFE (at 5 Wt.%) and MoS2 (at 1 Wt.%) were found to improve the tribological performance of the base oil. The weld load is significantly increased when 5 Wt.% of PTFE + MoS2 is added to the base oil.

Originality/value

A better tribological characteristic can be achieved by combining additives that amount to less than 1% of the base oil. In experiments with highly concentrated MoS2, the adequate pressure improved dramatically, but the lubricant’s tribological characteristics did not.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0321/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 April 2024

Zhanghuang Xie, Xiaomei Li, Dian Huang, Andrea Appolloni and Kan Fang

We consider a joint optimization problem of product platform design and scheduling on unrelated additive/subtractive hybrid machines, and seek to find efficient solution…

Abstract

Purpose

We consider a joint optimization problem of product platform design and scheduling on unrelated additive/subtractive hybrid machines, and seek to find efficient solution approaches to solve such problem.

Design/methodology/approach

We propose a mathematical formulation for the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines, and develop a simulated annealing-based hyper-heuristic algorithm with adjustable operator sequence length to solve the problem.

Findings

The simulated annealing-based hyper-heuristic algorithm with adjustable operator sequence length (SAHH-osla) that we proposed can be quite efficient in solving the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines.

Originality/value

To the best of our knowledge, we are one of the first to consider both cost-related and time-related criteria for the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 18 March 2020

Amir Reza Moravejolahkami, Zahra Esfandiari, Hadiseh Ebdali, Marjan Ganjali Dashti, Akbar Hassanzadeh, Hasan Ziaei and Nimah Bahreini Esfahani

Understanding consumers’ food safety practices are helpful in reducing foodborne illnesses. The purpose of this study is to evaluate the influence of education on knowledge…

Abstract

Purpose

Understanding consumers’ food safety practices are helpful in reducing foodborne illnesses. The purpose of this study is to evaluate the influence of education on knowledge, attitude and practices toward food additives.

Design/methodology/approach

This interventional study was performed by random sampling of 826 employees in Isfahan University of Medical Sciences from January 2018 to March 2019. The knowledge, attitude and practices of the employees toward food additives were assessed by a self-administered and structured questionnaire. Two-month education was conducted visually by using pamphlets, posters and leaflets. Descriptive statistics and paired t-test were done by SPSS24 at significant levels of p < 0.05.

Findings

The results showed that the respondents were very concerned about preservatives, colorants, and artificial sweeteners in foods. Before the education, the percentages collected for the knowledge, attitude and practice were 79.0, 48.9 and 46.7, respectively. Overall, knowledge scores were improved from 79.0 to 88.9 per cent when the education was offered. Safety attitude scores significantly increased, with a 50 per cent difference between the pre and post values. A significant difference was observed in the percentage of knowledge, attitude and practice of the employers before and after education (p < 0.05). Almost half of the respondents chose leaflets and pamphlets as a preferable tool for learning.

Originality/value

Education may be needed for improving knowledge and attitude about food additives. It also helped the respondents to select healthier food. This study suggests more communication programs regarding food safety issues.

Details

Nutrition & Food Science , vol. 50 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 8 April 2014

Junming Wang, Jianhua Wang, Chunsheng Li, Gaiqing Zhao and Xiaobo Wang

The purpose of this paper is to present the tribological, anticorrosion and antirust properties of three 2,5-dimercapto-1,3,4-thiadiazole (DMTD) derivatives as water-soluble…

Abstract

Purpose

The purpose of this paper is to present the tribological, anticorrosion and antirust properties of three 2,5-dimercapto-1,3,4-thiadiazole (DMTD) derivatives as water-soluble additives in water–glycol hydraulic fluid.

Design/methodology/approach

DMTD derivatives possessing excellent corrosion inhibiting and extreme-pressure (EP) properties have long been used as metal passivators and load-carrying additives in lubricating oils and grease. However, there are seldom literatures about DMTD derivatives as water-soluble lubricant additives as yet. In this work, three DMTD derivatives were synthesized and investigated as water-soluble additives in the water–glycol hydraulic fluid. Their tribological properties were evaluated in detail by four-ball wear test machine and Optimol SRV-IV oscillating friction and wear tester. Meanwhile, their anticorrosion and antirust properties were also investigated by copper strip corrosive tests and antirust tests, respectively. The worn surfaces were analyzed by scanning electron microscope and X-ray photonelectron spectroscope, and the EP, antiwear and friction-reducing mechanisms were primarily proposed.

Findings

The synthesized three DMTD derivatives (coded as A, B and C) have excellent solubility in the base liquid of the water–glycol hydraulic fluid. The experimental results demonstrated that all these compounds, especially A, could remarkably improve the EP, antiwear and friction-reducing properties of the base liquid. Furthermore, they all have perfect copper corrosion inhibiting and antirust properties with low adding concentration (< 3 weight per cent) in the base liquid and hence could be used as multifunctional additives in the water–glycol hydraulic fluid.

Research limitations/implications

This research only focused on the synthesized DMTD derivatives. If possible, some other thiadiazole derivatives also should be investigated.

Practical implications

The synthesized DMTD derivatives, especially compound A, can be used as multifunctional water-soluble additives in the water–glycol hydraulic fluid.

Originality/value

In this paper, three DMTD derivatives were synthesized and their tribological behaviors as water-soluble lubricant additives were investigated for the first time. In addition, the EP, antiwear and friction-reducing mechanisms were also put forward.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 March 2015

C. B. Mohan, K. Venkatesh, C. Divakar, K. Gopalakrishna, L. Murali and K. G. Lakshminarayana Bhatta

The paper aims to address the formulation of zirconium and oxalicum additive-based lubricants for use in slide ways to meet the demands of high positioning exactness based on…

Abstract

Purpose

The paper aims to address the formulation of zirconium and oxalicum additive-based lubricants for use in slide ways to meet the demands of high positioning exactness based on reduction in stick–slip and coefficient of friction over a wide speed range and compares the same with commercially available lubricant.

Design/methodology/approach

An investigation into the frictional properties and stick-slip behavior of lubricating oil is carried out using linear reciprocating tribometer and correlated with ultraviolet spectroscopic analysis.

Findings

It is observed that these transition metal additive compounds support in increasing the flexibility of the molecular chains leading to improved lubricity.

Originality/value

The lubricant additives considered for the current study are based on transition metals zirconium and oxalicum. It is observed that these additive compounds support in increasing the flexibility of the molecular chains, leading to improved lubricity.

Details

Industrial Lubrication and Tribology, vol. 67 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 17000