Search results

1 – 3 of 3
Article
Publication date: 18 January 2013

Xinmin Wang, Chengqun Yu and Junxi Wu

The purpose of this paper is to demonstrate the influence of annealing treatment on the photovoltaic properties of the solar cell based on ITO/PEDOT:PSS/ZnO:P3HT/Ag.

1890

Abstract

Purpose

The purpose of this paper is to demonstrate the influence of annealing treatment on the photovoltaic properties of the solar cell based on ITO/PEDOT:PSS/ZnO:P3HT/Ag.

Design/methodology/approach

The influence of the annealing temperature and time on the P3HT/ZnO interface morphology and the ITO/PEDOT:PSS/ZnO:P3HT/Ag solar cell performance was discussed. The morphology and the current‐voltage (J‐V) characteristics were investigated by atomic force morphology (AFM) and solar simulator with an AM 1.5 G filter under an irradiation intensity of 100 mW cm−2. The light intensity was calibrated using a standard silicon photovoltaic solar cell.

Findings

The photovoltaic performances were found to have been greatly enhanced by an annealing treatment at 145°C for 30 min.

Originality/value

The paper demonstrates that the annealing treatments play a crucial role in improving the morphology and J‐V performance of the ITO/PEDOT:PSS/ZnO:P3HT/Ag solar cell.

Details

Microelectronics International, vol. 30 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 15 June 2021

Deniz Zargari Afshar and Payam Alemi

At first, the organic/inorganic and hybrid PV materials by their electrical model are described. Then the proposed converter topology, circuit analysis and various operating modes…

Abstract

Purpose

At first, the organic/inorganic and hybrid PV materials by their electrical model are described. Then the proposed converter topology, circuit analysis and various operating modes of converter according to on/off timing of switches are investigated. The current and voltage in the converter components are illustrated and the voltage gain and switching stress of proposed converter are presented. Finally, to show the effectiveness of the proposed converter, the power loss analysis is provided and the simulation is done in PSIM software. In the last section, the advantages of the proposed topology of higher efficiency by lower number of components in compare with other conventional topologies are presented.

Design/methodology/approach

In this paper, an improved topology of DC-DC converter based on VL technique is proposed for Perovskite Solar cells (PeSCs). The PeSCs attracted a lot of interest due to their potential in combining the advantages of both organic and inorganic components. The proposed converter by using fewer components and higher output voltage generation in compare with conventional ones could be a good candidate for PeSCs due to lower efficiency of this cells. The performance of converter is expressed in continuous conduction mode (CCM) and discontinuous conduction mode (DCM), and the boundary conditions for the proposed converter is presented.

Findings

By using VL technique, this converter is used to boost the lower output voltage levels of PeSCs for grid connection. The PV cell output voltage is increased from 24.5 V to 106 V by proposed converter topology. The step-by-step voltage increasing by charging and discharging of inductor and capacitor is used for boosting the input voltage. By comparing other converters, there is no design complexity in the proposed converter structure, and the power loss is much reduced which increases the converter efficiency. On the other hand, due to using lower number of elements of energy storage elements such as inductors and capacitors, the converter cost is also diminished. Therefore, the design topology simplicity which result simple control algorithm and lower number of components which diminish the system cost by appropriate voltage boosting capability are the main advantages of this proposed topology for new PeSCs which don’t have enough efficiency in compare with old Si PV cells.

Originality/value

In this paper, by using the lower number of components a new structure of DC-DC converter based on the VL technique is proposed. The advantages of this converter such as the simplicity, easier control and high voltage gain by lower power loss, could make this converter a good candidate for new PeSCs where the system whole efficiency will be a critical point to have the unique properties of this new materials in lower loss.

Details

Circuit World, vol. 48 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 6 August 2018

Kindness A.M. Uyanga, Modestus Okechukwu Okwu, A.O. Adeoye and S.E. Ogbeide

The study aims to carry out the production of a bulk heterojunction organic solar cell in a laboratory scale using a blend of poly (3-hexylthiopene) (P3HT) and [6, 6]-phenyl (C61…

Abstract

Purpose

The study aims to carry out the production of a bulk heterojunction organic solar cell in a laboratory scale using a blend of poly (3-hexylthiopene) (P3HT) and [6, 6]-phenyl (C61) butyric acid methyl ether (PCBM).

Design/methodology/approach

Four inverted geometry organic solar cells were prepared based on 1:1 ratio of P3HT to PCBM and subjected to post annealing at different temperatures of 32, 120, 130 and 140°C. Solar cells were fabricated with structure glass/ITO/P3HT:PCBM/PEDOT:PSS/Au and characterized using Keithley 2400 series sourcemeter and a multimeter interfaced to a computer system with a LabVIEW software, which showed both dark and illumination current–voltage characteristic curves. Four reference cells were also fabricated with structure soda lime glass/P3HT:PCBM and annealed at different temperatures of 32, 120, 130 and 140°C.

Findings

The third organic solar cell prepared, Sample CITO, had the best performance with power conversion efficiency (PCE) of 2.0281 per cent, fill factor (FF) of 0.392, short circuit current of −0.0133 A and open circuit voltage of 0.389 V. Annealing of active layer was found to improve cell morphology, FF and PCE. Annealing of the active layer at 140°C resulted in a decrease of the PCE to 2.01 per cent.

Research limitations/implications

These findings are in good agreement with previous investigation in literature which reported that best annealing temperature for a 1:1 ratio blend of active material is 130°C. Ultraviolet–visible spectra on reference cells showed that sample CITO had wider absorption spectra with peak absorbance at a wavelength of 508 nm.

Originality/value

This research is purely original.

Details

World Journal of Engineering, vol. 15 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 3 of 3