Search results

1 – 2 of 2
Article
Publication date: 5 January 2015

Zhu Fanglong, Feng Qianqian, Liu Rangtong, Li Kejing and Zhou Yu

– The purpose of this paper is to employ a fractional approach to predict the permeability of nonwoven fabrics by simulating diffusion process.

Abstract

Purpose

The purpose of this paper is to employ a fractional approach to predict the permeability of nonwoven fabrics by simulating diffusion process.

Design/methodology/approach

The method described here follows a similar approach to anomalous diffusion process. The relationship between viscous hydraulic permeability and electrical conductivity of porous material is applied in the derivation of fractional power law of permeability.

Findings

The presented power law predicted by fractional method is validated by the results obtained from simulation of fluid flow around a 3D nonwoven porous material by using the lattice-Boltzmann approach. A relation between the fluid permeability and the fluid content (filling fraction), namely, following the power law of the form, was derived via a scaling argument. The exponent n is predominantly a function of pore-size distribution dimension and random walk dimension of the fluid.

Originality/value

The fractional scheme by simulating diffusion process presented in this paper is a new method to predict wicking fluid flow through nonwoven fabrics. The forecast approach can be applied to the prediction of the permeability of other porous materials.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 October 2023

Liang Ma and Jun Li

The present study provides a comprehensive review of the advancements in five active heating modes for cold-proof clothing as of 2021. It aims to evaluate the current state of…

Abstract

Purpose

The present study provides a comprehensive review of the advancements in five active heating modes for cold-proof clothing as of 2021. It aims to evaluate the current state of research for each heating mode and identify their limitations. Further, the study provides insights into the optimization of intelligent temperature control algorithms and design considerations for intelligent cold-proof clothing.

Design/methodology/approach

This article presents a classification of active heating systems based on five different heating principles: electric heating system, solar heating system, phase-change material (PCM) heating system, chemical heating system and fluid/air heating system. The systems are analyzed and evaluated in terms of heating principle, research advancement, scientific challenges and application potential in the field of cold-proof clothing.

Findings

The rational utilization of active heating modes enhances the thermal efficiency of cold-proof clothing, resulting in enhanced cold-resistance and reduced volume and weight. Despite progress in the development of the five prevalent heating modes, particularly with regard to the improvement and advancement of heating materials, the current integration of heating systems with cold-proof clothing is limited to the torso and limbs, lacking consideration of the thermal physiological requirements of the human body. Additionally, the heating modes of each system tend to be uniform and lack differentiation to meet the varying cold protection needs of various body parts.

Research limitations/implications

The effective application of multiple heating modes helps the human body to maintain a constant body temperature and thermal equilibrium in a cold environment. The research of heating mode is the basis for realizing the temperature control of cold-proof clothing and provides an effective guarantee for the future development of the intelligent algorithms for temperature control of non-uniform heating of body segments.

Practical implications

The integration of multiple heating modes ensures the maintenance of a constant body temperature and thermal balance for the wearer in cold environments. The research of heating modes forms the foundation for the temperature regulation of cold-proof clothing and lays the groundwork for the development of intelligent algorithms for non-uniform heating control of different body segments.

Originality/value

The present article systematically reviews five active heating modes suitable for use in cold-proof clothing and offers guidance for the selection of heating systems in future smart cold-proof clothing. Furthermore, the findings of this research provide a basis for future research on non-uniform heating modes that are aligned with the thermal physiological needs of the human body, thus contributing to the development of cold-proof clothing that is better suited to meet the thermal needs of the human body.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 2 of 2