Search results
1 – 10 of 31Zhu Fanglong, Feng Qianqian, Liu Rangtong, Li Kejing and Zhou Yu
– The purpose of this paper is to employ a fractional approach to predict the permeability of nonwoven fabrics by simulating diffusion process.
Abstract
Purpose
The purpose of this paper is to employ a fractional approach to predict the permeability of nonwoven fabrics by simulating diffusion process.
Design/methodology/approach
The method described here follows a similar approach to anomalous diffusion process. The relationship between viscous hydraulic permeability and electrical conductivity of porous material is applied in the derivation of fractional power law of permeability.
Findings
The presented power law predicted by fractional method is validated by the results obtained from simulation of fluid flow around a 3D nonwoven porous material by using the lattice-Boltzmann approach. A relation between the fluid permeability and the fluid content (filling fraction), namely, following the power law of the form, was derived via a scaling argument. The exponent n is predominantly a function of pore-size distribution dimension and random walk dimension of the fluid.
Originality/value
The fractional scheme by simulating diffusion process presented in this paper is a new method to predict wicking fluid flow through nonwoven fabrics. The forecast approach can be applied to the prediction of the permeability of other porous materials.
Details
Keywords
M. Dimassi, L. Koehl, X. Zeng and A. Peruwelz
The knowledge of structural parameters of nonwovens media is poorly understood. The pores size distribution (PSD) function is one of those parameters. The difficulty is…
Abstract
Purpose
The knowledge of structural parameters of nonwovens media is poorly understood. The pores size distribution (PSD) function is one of those parameters. The difficulty is not only the understanding of the distribution of pores but also the identification of pores geometry distribution (PGD) and their behaviour concerning the dynamic fluid transportation. The purpose of this paper is to present an efficient and reliable method based on image analysis which on one hand, performs the estimation of the PSD function and takes into account the geometric aspect of pores, and on the other hand, analyses liquid wicking in very thin filter media.
Design/methodology/approach
The proposed methods, in this paper, are applied on thin filter media made of polyester. The samples have not sudden any treatment. The authors set up an optical test bed in order to observe the dynamic properties of the samples. Dynamic raw data about the liquid wicking are extracted directly from video sequences using the appropriate test bed. The structural parameters are extracted from the non‐wetted samples.
Findings
Obtained results allow a better understanding of the liquid wicking in very thin filter media. In addition to the PSD function, the PGD function adds informations about the shape of pores. The dynamic data of the liquid wicking explains that pores have different behaviour when liquid reached them. It can be deduced from this study that the fluid transport in the pore network is defined by three main parameters: geometric parameter (size, shape), capillary action and pores connection in the network.
Research limitations/implications
The led back‐lighting system is not sufficient to observe precisely the liquid wicking. An additional front‐lighting will be added in further studies.
Originality/value
The extraction of dynamic properties from video sequences, by performing image analysis is an original method to characterise the porosity in thin media filter.
Details
Keywords
Phillip Gibson, Donald Rivin and Cyrus Kendrick
Reports on an automated apparatus and test procedure to determine the convective and diffusive gas and vapor transport properties of small pieces of woven and nonwoven…
Abstract
Reports on an automated apparatus and test procedure to determine the convective and diffusive gas and vapor transport properties of small pieces of woven and nonwoven fabrics, membranes, and foams. The apparatus allows measurement of these properties in the very small quantities typical of material development programs, where the largest sample available may only be 1‐10cm2 in area. The convection/diffusion test method is useful for determining the gas flow resistance property and water vapor diffusion properties from a single experimental run. This eliminates the need for two separate tests, which is the usual procedure. The apparatus may also be used to perform separate tests for the diffusion property or the air permeability property, which may have some advantages when materials exhibit strongly concentration‐dependent transport properties. The convection/diffusion test method is well‐suited for rapid screening and comparison of the properties of a large number of materials with widely‐varying transport properties.
Details
Keywords
Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched…
Abstract
Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.
Details
Keywords
Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched…
Abstract
Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.
Details
Keywords
Examines the twelfth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…
Abstract
Examines the twelfth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.
Details
Keywords
Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched…
Abstract
Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.
Details
Keywords
Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…
Abstract
Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.
Details
Keywords
HongYan Liu, Addie Bahi and Frank K. Ko
Wolverine hairs with superior heat transfer properties have been used as fur ruffs for extreme cold-weather clothing. In order to understand the exclusive mechanism of…
Abstract
Purpose
Wolverine hairs with superior heat transfer properties have been used as fur ruffs for extreme cold-weather clothing. In order to understand the exclusive mechanism of wolverine surviving in the cold areas of circumpolar, the purpose of this paper is to establish a one-dimensional fractional heat transfer equation to reveal the hidden mechanism for the hairs, and also calculate the fractal dimension of the wolverine hair using the box counting method to verify the proposed theory. The observed results (from the proposed model) found to be in good agreement with the box counting method. This model can explain the phenomenon which offers the theoretical foundation for the design of extreme cold weather clothing.
Design/methodology/approach
The authors calculated the fractal dimension of the wolverine hair using the box counting method to verify the proposed theory. The observed results (from the proposed model) found to be in good agreement with the box counting method.
Findings
The box counting method proves that the theoretical model is applicable.
Originality/value
The authors propose the first heat transfer model for the wolverine hair.
Details
Keywords
Gobi Nallathambi, Berly Robert, Sharon Preethi Esmeralda, Janani Kumaravel and Vinitha Parthiban
Development of high efficiency nanofibrous air filter membrane by electrospinning process, to address the air pollution (both the particulate matter and the gaseous…
Abstract
Purpose
Development of high efficiency nanofibrous air filter membrane by electrospinning process, to address the air pollution (both the particulate matter and the gaseous components) problem, which has become a major environmental concern.
Design/methodology/approach
By exploiting the advantage of active sites on soy protein isolate (SPI), the very high surface area of micro-pore rich activated carbon (AC) and the biocompatibility and biodegradable nature of polyvinyl alcohol (PVA). The authors have developed a SPI/AC/PVA hybrid membrane. Spun-bond nonwoven substrate was used as the support material to enhance the mechanical properties and also the filter handling properties. The properties of nanofibrous membrane including morphology, air permeability, filtration efficiency and formaldehyde absorption test were carried out as per standard test methods.
Findings
SPI-based membrane offers a great potential in air filtration/purification applications. Its potential to capture glancing pollutants at the molecular level is because of the presence of numerous functional groups on the soy protein surface, which enhances the adsorption of particulate matter and toxic gases, even bacteria and viruses to its surface.
Originality/value
The results are anticipated to provide a potential method to promote the development of a nanofibrous membrane, which can act as a high performance, dual function and eco-friendly air filter/purifier.
Details