Search results

1 – 10 of 68
Article
Publication date: 29 February 2024

Zhen Chen, Jing Liu, Chao Ma, Huawei Wu and Zhi Li

The purpose of this study is to propose a precise and standardized strategy for numerically simulating vehicle aerodynamics.

Abstract

Purpose

The purpose of this study is to propose a precise and standardized strategy for numerically simulating vehicle aerodynamics.

Design/methodology/approach

Error sources in computational fluid dynamics were analyzed. Additionally, controllable experiential and discretization errors, which significantly influence the calculated results, are expounded upon. Considering the airflow mechanism around a vehicle, the computational efficiency and accuracy of each solution strategy were compared and analyzed through numerous computational cases. Finally, the most suitable numerical strategy, including the turbulence model, simplified vehicle model, calculation domain, boundary conditions, grids and discretization scheme, was identified. Two simplified vehicle models were introduced, and relevant wind tunnel tests were performed to validate the selected strategy.

Findings

Errors in vehicle computational aerodynamics mainly stem from the unreasonable simplification of the vehicle model, calculation domain, definite solution conditions, grid strategy and discretization schemes. Using the proposed standardized numerical strategy, the simulated steady and transient aerodynamic characteristics agreed well with the experimental results.

Originality/value

Building upon the modified Low-Reynolds Number k-e model and Scale Adaptive Simulation model, to the best of the authors’ knowledge, a precise and standardized numerical simulation strategy for vehicle aerodynamics is proposed for the first time, which can be integrated into vehicle research and design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2024

Lifeng Wang, Yi Zhang, Ziwang Xiao and Long Liu

Effectively solving the large tonnage cable in the construction process due to the tensioning method of the inclined cable often appears in the overall cable force and the design…

Abstract

Purpose

Effectively solving the large tonnage cable in the construction process due to the tensioning method of the inclined cable often appears in the overall cable force and the design value of the deviation is large, cable internal strand force is not uniform, the main girder stress exceeds the limit of the problem affecting the safety of the structure.

Design/methodology/approach

In this study, the finite element method and theoretical analysis method are utilized to propose a construction control method of tensioning the whole bunch of diagonal cables in two parts according to the deformation coordination relationship between the main girder and the diagonal cables. This methodology was implemented during the actual construction of the PAIRA Bridge in Bangladesh.

Findings

Tests conducted on cable-stayed bridges using this controlled tensioning method demonstrate that the measured cable strength of a single strand exhibits an error of less than 0.15% compared to the design target cable strength. The deviation between the measured and designed cable forces ranges from 0.16% to 0.27%. Furthermore, no tensile stress is observed in both the top plate and bottom plate of the root section of the main girder, indicating a state of full-section compression throughout the entire construction process.

Originality/value

Through the comparison with the test value, it can be proved that the whole bunch of diagonal cable tensioned in two parts of the construction control method proposed in this paper can make the internal strand force more uniform, to meet the precision requirements of the site construction, to protect the safety of the bridge construction process. The method proposed in this paper is highly accurate, easy to calculate, and has a high value of popularization and application.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 January 2024

Xin Cai, Xiaozhou Zhu and Wen Yao

Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and…

Abstract

Purpose

Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and parameter uncertainties, it is difficult to control the unmanned aerial vehicle (UAV) to achieve high-precision tracking performance. This paper aims to design a safety controller that uses observer and neural network method to improve the tracking performance of UAV under multiple disturbances. The experiments prove that this method is effective.

Design/methodology/approach

First, to actively estimate and compensate the synthetic uncertainties of the system, a finite-time extended state observer is investigated, and the disturbances are transformed into the extended state of the system for estimation. Second, an adaptive neural network controller that does not accurately require the dynamic model knowledge is designed based on the estimated value, where the weights of the neural network can be dynamically adjusted by the adaptive law. Furthermore, the finite-time bounded convergence of the proposed observer and the stability of the system are proved through homogeneous theory and Lyapunov method.

Findings

The figure-“8” climbing flight simulation and real flight experiments illustrate that the proposed safety control strategy has good tracking performance.

Originality/value

This paper proposes the safety control structure of the UAV, which combines the extended state observer with the neural network method. Numerical simulation results and actual flight experiments demonstrate the effectiveness of the proposed control strategy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 April 2024

Zhenbao Wang, Zhen Yang, Mengyu Liu, Ziqin Meng, Xuecheng Sun, Huang Yong, Xun Sun and Xiang Lv

Microribbon with meander type based on giant magnetoimpedance (GMI) effect has become a research hot spot due to their higher sensitivity and spatial resolution. The purpose of…

Abstract

Purpose

Microribbon with meander type based on giant magnetoimpedance (GMI) effect has become a research hot spot due to their higher sensitivity and spatial resolution. The purpose of this paper is to further optimize the line spacing to improve the performance of meanders for sensor application.

Design/methodology/approach

The model of GMI effect of microribbon with meander type is established. The effect of line spacing (Ls) on GMI behavior in meanders is analyzed systematically.

Findings

Comparison of theory and experiment indicates that decreasing the line spacing increases the negative mutual inductance and a consequent increase in the GMI effect. The maximum value of the GMI ratio increases from 69% to 91.8% (simulation results) and 16.9% to 51.4% (experimental results) when the line spacing is reduced from 400 to 50 µm. The contribution of line spacing versus line width to the GMI ratio of microribbon with meander type was contrasted. This behavior of the GMI ratio is dominated by the overall negative contribution of the mutual inductance.

Originality/value

This paper explores the effect of line spacing on the GMI ratio of meander type by comparing the simulation results with the experimental results. The superior line spacing is found in the identical sensing area. The findings will contribute to the design of high-performance micropatterned ribbon with meander-type GMI sensors and the establishment of a ribbon-based magnetic-sensitive biosensing system.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 June 2023

Yongjia Lin, Zhenye Lu, Di Fan and Zhen Zheng

This study aims to investigate the bright and dark sides of environmental, social and governance (ESG) during the COVID-19 pandemic, including both the outbreak and recovery…

1115

Abstract

Purpose

This study aims to investigate the bright and dark sides of environmental, social and governance (ESG) during the COVID-19 pandemic, including both the outbreak and recovery periods, for the Chinese hospitality industry.

Design/methodology/approach

Using panel data of 564 firm-quarter observations from 2018 to 2020, the authors adopt fixed-effects regression estimation with standard errors clustered at the firm level. To address potential endogeneity concerns, the authors also use the two-stage least squares estimator with instrumental variables.

Findings

The results suggest that ESG plays different roles in market- and accounting-based performance during the COVID-19 outbreak and recovery periods. Specifically, ESG practices show a bright side as a reputation builder to mitigate the negative pandemic impact on market-based performance, whereas the dark side of ESG practices consumes firm resources to aggravate the negative pandemic impact on accounting-based performance during the coronavirus outbreak. These results also suggest hospitality companies benefit bountifully from ESG practices during the COVID-19 recovery.

Practical implications

ESG plays a vital role for hospitality firms by providing insurance-like protection during and after the COVID-19 outbreak. Additionally, hospitality firms should evaluate their capability to adapt resource-consuming ESG practices.

Originality/value

Existing hospitality COVID-19 studies have investigated the effect of ESG on firm performance within a short period with mixed results. This study extends the literature by showing the different effects of ESG practices on market- and accounting-based performance during the COVID-19 outbreak and recovery periods.

Details

International Journal of Contemporary Hospitality Management, vol. 36 no. 4
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 1 March 2024

Wei-Zhen Wang, Hong-Mei Xiao and Yuan Fang

Nowadays, artificial intelligence (AI) technology has demonstrated extensive applications in the field of art design. Attribute editing is an important means to realize clothing…

Abstract

Purpose

Nowadays, artificial intelligence (AI) technology has demonstrated extensive applications in the field of art design. Attribute editing is an important means to realize clothing style and color design via computer language, which aims to edit and control the garment image based on the specified target attributes while preserving other details from the original image. The current image attribute editing model often generates images containing missing or redundant attributes. To address the problem, this paper aims for a novel design method utilizing the Fashion-attribute generative adversarial network (AttGAN) model was proposed for image attribute editing specifically tailored to women’s blouses.

Design/methodology/approach

The proposed design method primarily focuses on optimizing the feature extraction network and loss function. To enhance the feature extraction capability of the model, an increase in the number of layers in the feature extraction network was implemented, and the structure similarity index measure (SSIM) loss function was employed to ensure the independent attributes of the original image were consistent. The characteristic-preserving virtual try-on network (CP_VTON) dataset was used for train-ing to enable the editing of sleeve length and color specifically for women’s blouse.

Findings

The experimental results demonstrate that the optimization model’s generated outputs have significantly reduced problems related to missing attributes or visual redundancy. Through a comparative analysis of the numerical changes in the SSIM and peak signal-to-noise ratio (PSNR) before and after the model refinement, it was observed that the improved SSIM increased substantially by 27.4%, and the PSNR increased by 2.8%, serving as empirical evidence of the effectiveness of incorporating the SSIM loss function.

Originality/value

The proposed algorithm provides a promising tool for precise image editing of women’s blouses based on the GAN. This introduces a new approach to eliminate semantic expression errors in image editing, thereby contributing to the development of AI in clothing design.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 April 2024

Zhen Wang and Yao Song

Drawing on goal orientation theory, this study intends to investigate whether, how and when developmental leadership influences employees’ feedback seeking behavior (FSB) and…

Abstract

Purpose

Drawing on goal orientation theory, this study intends to investigate whether, how and when developmental leadership influences employees’ feedback seeking behavior (FSB) and feedback avoidance behavior (FAB).

Design/methodology/approach

The authors used a two-wave survey of 416 full-time employees in China. The hypotheses were tested with path analyses.

Findings

Developmental leadership exerts a positive influence on employees’ FSB and a negative impact on FAB through learning goal orientation (LGO). Additionally, leaders’ high performance expectations (LHPE) not only strengthen the positive effects of developmental leadership on FSB but also intensify its weakening effects on FAB.

Originality/value

The findings enrich current understanding by associating developmental leadership with employees’ FSB/FAB, offering a new viewpoint on its positive impacts. This study also provides deeper insights into when the benefits of developmental leadership are intensified.

Details

Leadership & Organization Development Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-7739

Keywords

Article
Publication date: 12 April 2024

Zhen Li, Jianqing Han, Mingrui Zhao, Yongbo Zhang, Yanzhe Wang, Cong Zhang and Lin Chang

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes…

Abstract

Purpose

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes. Through experimental verification, the effectiveness of the theoretical model in evaluating CI sensors equipped with shielding electrodes has been demonstrated.

Design/methodology/approach

The study begins by incorporating the interelectrode shielding and surrounding shielding electrodes of CI sensors into the theoretical model. A method for deriving the semianalytical model is proposed, using the renormalization group method and physical model. Based on random geometric parameters of CI sensors, capacitance values are calculated using both simulation models and theoretical models. Three different types of CI sensors with varying geometric parameters are designed and manufactured for experimental testing.

Findings

The study’s results indicate that the errors of the semianalytical model for the CI sensor are predominantly below 5%, with all errors falling below 10%. This suggests that the semianalytical model, derived using the renormalization group method, effectively evaluates CI sensors equipped with shielding electrodes. The experimental results demonstrate the efficacy of the theoretical model in accurately predicting the capacitance values of the CI sensors.

Originality/value

The theoretical model of CI sensors is described by incorporating the interelectrode shielding and surrounding shielding electrodes into the model. This comprehensive approach allows for a more accurate evaluation of the detecting capability of CI sensors, as well as optimization of their performance.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 November 2023

Meng Jiang, Yang Liu, Ke Li, Zhen Pan, Quan Sun, Yongzhe Xu and Yuan Tao

The purpose of this paper is to study the reliability of sintered nano-silver joints on bare copper substrates during high-temperature storage (HTS).

Abstract

Purpose

The purpose of this paper is to study the reliability of sintered nano-silver joints on bare copper substrates during high-temperature storage (HTS).

Design/methodology/approach

In this study, HTS at 250 °C was carried out to investigate the reliability of nano-silver sintered joints. Combining the evolution of the microstructure and shear strength of the joints, the degradation mechanisms of joints performance were characterized.

Findings

The results indicated that the degradation of the shear properties of sintered nano-silver joints on copper substrates was attributed to copper oxidation at the silver/copper interface and interdiffusion of interfacial elements. The joints decreased by approximately 57.4% compared to the original joints after aging for 500 h. In addition, severe coarsening of the silver structure was also an important cause for joints failure during HTS.

Originality/value

This paper provides a comparison of quantitative and mechanistic evaluation of sintered silver joints on bare copper substrates during HTS, which is of great importance in promoting the development of sintered silver technology.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 2 January 2024

Xiangdi Yue, Yihuan Zhang, Jiawei Chen, Junxin Chen, Xuanyi Zhou and Miaolei He

In recent decades, the field of robotic mapping has witnessed widespread research and development in light detection and ranging (LiDAR)-based simultaneous localization and…

Abstract

Purpose

In recent decades, the field of robotic mapping has witnessed widespread research and development in light detection and ranging (LiDAR)-based simultaneous localization and mapping (SLAM) techniques. This paper aims to provide a significant reference for researchers and engineers in robotic mapping.

Design/methodology/approach

This paper focused on the research state of LiDAR-based SLAM for robotic mapping as well as a literature survey from the perspective of various LiDAR types and configurations.

Findings

This paper conducted a comprehensive literature review of the LiDAR-based SLAM system based on three distinct LiDAR forms and configurations. The authors concluded that multi-robot collaborative mapping and multi-source fusion SLAM systems based on 3D LiDAR with deep learning will be new trends in the future.

Originality/value

To the best of the authors’ knowledge, this is the first thorough survey of robotic mapping from the perspective of various LiDAR types and configurations. It can serve as a theoretical and practical guide for the advancement of academic and industrial robot mapping.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 68