Search results

1 – 7 of 7
Article
Publication date: 2 January 2024

Xu Li, Zeyu Xiao, Zhenguo Zhao, Junfeng Sun and Shiyuan Liu

To explore the economical and reasonable semi-rigid permeable base layer ratio, solve the problems caused by rainwater washing over the pavement base layer on the slope, improve…

Abstract

Purpose

To explore the economical and reasonable semi-rigid permeable base layer ratio, solve the problems caused by rainwater washing over the pavement base layer on the slope, improve its drainage function, improve the water stability and service life of the roadbed pavement and promote the application of semi-rigid permeable base layer materials in the construction of asphalt pavement in cold regions.

Design/methodology/approach

In this study, three semi-rigid base course materials were designed, the mechanical strength and drainage properties were tested and the effect and correlation of air voids on their performance indexes were analyzed.

Findings

It was found that increasing the cement content increased the strength but reduced the air voids and water permeability coefficient. The permeability performance of the sandless material was superior to the dense; the performance of the two sandless materials was basically the same when the cement content was 7%. Overall, the skeleton void (sand-containing) type gradation between the sandless and dense types is more suitable as permeable semi-rigid base material; its gradation is relatively continuous, with cement content? 4.5%, strength? 1.5 MPa, water permeability coefficient? 0.8 cm/s and voids of 18–20%.

Originality/value

The study of permeable semi-rigid base material with large air voids could help to solve the problems of water damage and freeze-thaw damage of the base layer of asphalt pavements in cold regions and ensure the comfort and durability of asphalt pavements while having good economic and social benefits.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 March 2024

Bing Xue, Rui Yao, Zengyu Ye, Cheuk Ting Chan, Dickson K.W. Chiu and Zeyu Zhong

With the rapid development of social media, many organizations have begun to attach importance to social media platforms. This research studies the management and the use of…

Abstract

Purpose

With the rapid development of social media, many organizations have begun to attach importance to social media platforms. This research studies the management and the use of social media in academic music libraries, taking the Center for Chinese Music Studies of the Chinese University of Hong Kong (CCMS) as a case study.

Design/methodology/approach

We conducted a sentiment analysis of posts on Facebook’s public page to analyze the reaction to the posts with some exploratory analysis, including the communication trend and relevant factors that affect user interaction.

Findings

Our results show that the Facebook channel for the library has a good publicity effect and active interaction, but the number of posts and interactions has a downward trend. Therefore, the library needs to pay more attention to the management of the Facebook channel and take adequate measures to improve the quality of posts to increase interaction.

Originality/value

Few studies have analyzed existing data directly collected from social media by programming based on sentiment analysis and natural language processing technology to explore potential methods to promote music libraries, especially in East Asia, and about traditional music.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 4 March 2024

Zeyu Xing, Tachia Chin, Jing Huang, Mirko Perano and Valerio Temperini

The ongoing paradigm shift in the energy sector holds paramount implications for the realization of the sustainable development goals, encompassing critical domains such as…

Abstract

Purpose

The ongoing paradigm shift in the energy sector holds paramount implications for the realization of the sustainable development goals, encompassing critical domains such as resource optimization, environmental stewardship and workforce opportunities. Concurrently, this transformative trajectory within the power sector possesses a dual-edged nature; it may ameliorate certain challenges while accentuating others. In light of the burgeoning research stream on open innovation, this study aims to examine the intricate dynamics of knowledge-based industry-university-research networking, with an overarching objective to elucidate and calibrate the equilibrium of ambidextrous innovation within power systems.

Design/methodology/approach

The authors scrutinize the role of different innovation organizations in three innovation models: ambidextrous, exploitative and exploratory, and use a multiobjective decision analysis method-entropy weight TOPSIS. The research was conducted within the sphere of the power industry, and the authors mined data from the widely used PatSnap database.

Findings

Results show that the breadth of knowledge search and the strength of an organization’s direct relationships are crucial for ambidextrous innovation, with research institutions having the highest impact. In contrast, for exploitative innovation, depth of knowledge search, the number of R&D patents and the number of innovative products are paramount, with universities playing the most significant role. For exploratory innovation, the depth of knowledge search and the quality of two-mode network relations are vital, with research institutions yielding the best effect. Regional analysis reveals Beijing as the primary hub for ambidextrous and exploratory innovation organizations, while Jiangsu leads for exploitative innovation.

Practical implications

The study offers valuable implications to cope with the dynamic state of ambidextrous innovation performance of the entire power system. In light of the findings, the dynamic state of ambidextrous innovation performance within the power system can be adeptly managed. By emphasizing a balance between exploratory and exploitative strategies, stakeholders are better positioned to respond to evolving challenges and opportunities. Thus, the study offers pivotal guidance to ensure sustained adaptability and growth in the power sector’s innovation landscape.

Originality/value

The primary originality is to extend and refine the theoretical understanding of ambidextrous innovation within power systems. By integrating several theoretical frameworks, including social network theory, knowledge-based theory and resource-based theory, the authors enrich the theoretical landscape of power system ambidextrous innovation. Also, this inclusive examination of two-mode network structures, including the interplay between knowledge and cooperation networks, unveils the intricate interdependencies between these networks and the ambidextrous innovation of power systems. This approach significantly widens the theoretical parameters of innovation network research.

Details

Journal of Knowledge Management, vol. 28 no. 5
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 29 May 2024

Xianjin Zha, Zeyu Lu and Yalan Yan

For undergraduate and graduate students in universities, social media are playing an important role in their study/research because a large amount of academic information has been…

Abstract

Purpose

For undergraduate and graduate students in universities, social media are playing an important role in their study/research because a large amount of academic information has been accumulated on social media. Indeed, social media are complementing university libraries. Given that intelligent recommender systems have been widely implemented on social media, this paper aims to examine the adoption mechanism of intelligently recommended information by university students in their study/research.

Design/methodology/approach

Building upon the updated information system success model and herding theory, this study developed a research model to examine the determinants of recommended information adoption in mobile applications for social media. Data were collected through an online questionnaire and analyzed with partial least squares structural equation modelling.

Findings

The results suggest that herding belief is a valid second-order construct, comprising two first-order dimensions of imitating others and discounting their own information. Information quality, system quality and service quality directly impact satisfaction with the intelligent recommender system. Furthermore, satisfaction with the intelligent recommender system and herding belief directly impact recommended information adoption by university students in their study/research.

Originality/value

This study draws on the updated information system success model and incorporates herding belief as an extended component to investigate recommended information adoption, providing a new lens for understanding recommended information adoption by university students in their study/research.

Details

The Electronic Library , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-0473

Keywords

Article
Publication date: 12 September 2023

Zhili Zhao, Mingqiang Zhang, Xi Meng, Zhenkun Li, Jiazhe Li, Luying Qiu and Zeyu Ren

The author proposed a friction plunge micro-welding (FPMW) method and applied it to column grid array packaging to realize the connection of copper columns without precision molds…

Abstract

Purpose

The author proposed a friction plunge micro-welding (FPMW) method and applied it to column grid array packaging to realize the connection of copper columns without precision molds assisted positioning. The purpose of this paper is to study the flow behavior of the solder undergoing frictional thermo-mechanical action during the FPMW and to determine the source of the solders in the micro-zones with different microstructure characteristics near the solder/Cu column friction interface.

Design/methodology/approach

Three kinds of Sn58Bi/SAC305 and SAC305/Pb90Sn composite solder samples were designed to study the flow behavior of the solder during FPMW using Bi and Pb as tracer elements.

Findings

The results show that most of the solders in the position occupied by the copper column was softened and plasticized during the welding process and was extruded to side of the copper column, flowing axially, circumferentially and radially along a trajectory similar to a conical spiral line. Under the drive of the tangential friction force and the radial hold-tight force, the extruded out visco-plastic solders fully mixed with the visco-plastic solders on the sides of the copper column, and bonded with the solders that deformed plastically on the periphery, so that a stir zone and a dynamic recrystallization zone finally evolved. The outside plastically deformed solders evolved into a thermo-mechanical affected zone.

Originality/value

The flow behavior of the solder during the FPMW was determined, as well as the source of the solders in micro-zones with different microstructure characteristics.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 May 2021

Ning Wang, Haitao Zhang and Huizhong Xiong

In order to unravel the evolution of microstructure characteristics and the change of mechanical properties of bituminous mixture in the freezing and thawing environment in cold…

Abstract

Purpose

In order to unravel the evolution of microstructure characteristics and the change of mechanical properties of bituminous mixture in the freezing and thawing environment in cold region, this study starts from macroscopic experiments and analyzes the changes in mechanical properties of asphalt mixtures before and after freezing and thawing in detail. On this basis, the displacement of key particles in the structure of asphalt mixture under the action of external forces (before and after freezing and thawing) is simulated through the combination macroscopic and microscopic methods.

Design/methodology/approach

The climate in China exhibits high complexity and diversity, divided into five zones based on the temperature difference from south to north. Considering that the significant effect of geography and natural climate on the design, construction and maintenance of asphalt pavement, the criterion for the road construction at different areas should be highly different.

Findings

The results show that the mechanical properties of asphalt mixture greatly decrease due to the influence of freeze-thaw, and the displacement of key particles in the structure of asphalt mixture (several representative particle sizes were selected through experiments) is obviously observed because of the action of external force. By analyzing the variation of several key particle sizes after freezing-thawing cycle, the gradation standard of asphalt mixture aggregate suitable for cold area was obtained. The research results have certain theoretical and practical value for the design and application of asphalt mixture in cold area.

Originality/value

The results show that the mechanical properties of asphalt mixture greatly decrease due to the influence of freeze-thaw, and the displacement of key particles in the structure of asphalt mixture (several representative particle sizes were selected through experiments) is obviously observed because of the action of external force. By analyzing the variation of several key particle sizes after freezing-thawing cycle, the gradation standard of asphalt mixture aggregate suitable for cold area was obtained. The research results have certain theoretical and practical value for the design and application of asphalt mixture in cold area.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 August 2021

Jie Chen, Yongqiang Yang, Shibiao Wu, Mingkang Zhang, Shuzhen Mai, Changhui Song and Di Wang

In this paper, the mechanical properties and corrosion resistance of CoCr alloy fabricated by selective laser melting (SLM) were studied, and the changes of performance after…

Abstract

Purpose

In this paper, the mechanical properties and corrosion resistance of CoCr alloy fabricated by selective laser melting (SLM) were studied, and the changes of performance after porcelain sintering process were also analysed. This study is to point out the relationship between the microstructure, mechanical properties and corrosion resistance of CoCr alloys prepared by SLM after porcelain sintering process. In addition, the biosafety of the sintered CoCr alloy was evaluated.

Design/methodology/approach

The microscopic feature changes of CoCr alloy samples after porcelain sintering process were observed by DMI 5000 M inverted metallographic microscope and Nova Nano430 FE-SEM. Moreover, phase identification and determination were conducted by X-ray diffraction (XRD) using Smartlab X-ray diffractometer. The Vickers microhardness was measured on the HVS-30 microhardness tester, and tensile tests were carried out on a CM3505 electronic universal testing machine. The corrosion resistance was tested by a classical three-point electrode system electrochemical method, then the ion precipitation was measured by using an atomic absorption spectrometer of Z2000 7JQ8024.

Findings

The XRD results indicate that the transition of γ phase (FCC) to e phase (HCP) occurs during the porcelain sintering processing of CoCr alloy. Moreover, the Vickers microhardness of the upper surface and the side surface of the CoCr alloy sample was improved by more than 36%. In addition, the ultimate strength of CoCr alloy via porcelain sintering treatment was increase to 1,395.3 ± 53.0 MPa compared to 1,282.7 ± 10.1 MPa of unprocessed CoCr alloy. However, the corrosion resistance of CoCr alloy samples decreases after porcelain sintering process.

Originality/value

There are few studies on the relationship of microstructure, mechanical properties and corrosion resistance of CoCr alloys prepared by SLM after porcelain sintering process. In this study, the microstructure, mechanical properties and corrosion resistance of CoCr alloy after porcelain sintering process were studied, and the biosafety of the alloy was evaluated. The research found that it is feasible to apply CoCr alloy fabricated by SLM to dental medicine after porcelain sintering process.

Details

Rapid Prototyping Journal, vol. 27 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 7 of 7