Search results

1 – 10 of over 23000
Article
Publication date: 3 July 2017

Jaime Renedo Anglada, Suleiman Sharkh and Arfakhshand Qazalbash

The purpose of this paper is to study the effect of curvature on the magnetic field distribution and no-load rotor eddy current losses in electric machines, particularly in…

Abstract

Purpose

The purpose of this paper is to study the effect of curvature on the magnetic field distribution and no-load rotor eddy current losses in electric machines, particularly in high-speed permanent magnet (PM) machines.

Design/methodology/approach

The magnetic field distribution is obtained using conformal mapping, and the eddy current losses are obtained using a cylindrical multilayer model. The analytical results are validated using a two-dimensional finite element analysis. The analytical method is based on a proportional-logarithmic conformal transformation that maps the cylindrical geometry of a rotating electric machine into a rectangular configuration without modifying the length scale. In addition, the appropriate transformation of PM cylindrical domains into the rectangular domain is deduced. Based on this conformal transformation, a coefficient to quantify the effect of curvature is proposed.

Findings

Neglecting the effect of curvature can produce significant errors in the calculation of no-load rotor losses when the ratio between the air-gap length and the rotor diameter is large.

Originality/value

The appropriate transformation of PM cylindrical domains into the rectangular domain is deduced. The proportional-logarithmic transformation proposed provides an insight into the effect of curvature on the magnetic field distribution in the air-gap and no-load rotor losses. Furthermore, the proposed curvature coefficient gives a notion of the effect of curvature for any particular geometry without the necessity of any complicated calculation. The case study shows that neglecting the effect of curvature underestimates the rotor eddy-current losses significantly in machines with large gap-to-rotor diameter ratios.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 13 August 2018

Robert L. Dipboye

Abstract

Details

The Emerald Review of Industrial and Organizational Psychology
Type: Book
ISBN: 978-1-78743-786-9

Article
Publication date: 1 August 1999

C. Benoit, P. Coorevits and J.‐P. Pelle

A method for controlling the quality of finite element analyses for plate structures is proposed herein. It is based on the concept of error in the constitutive relation as well…

Abstract

A method for controlling the quality of finite element analyses for plate structures is proposed herein. It is based on the concept of error in the constitutive relation as well as on associated techniques for constructing admissible displacement‐stress fields with respect to a reference model. In this study, the chosen model is either Reissner‐Mindlin’s or Kirchhoff‐Love’s model. The finite element used is the DKT element; these error estimators allow us to determine that this element converges for Kirchhoff‐Love’s model. Once these error estimators have been identified, techniques of adaptive meshing developed in 2D are applied and several examples are presented.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 May 2020

Jéderson da Silva, Jucélio Tomás Pereira and Diego Amadeu F. Torres

The purpose of this paper is to propose a new scheme for obtaining acceptable solutions for problems of continuum topology optimization of structures, regarding the distribution…

Abstract

Purpose

The purpose of this paper is to propose a new scheme for obtaining acceptable solutions for problems of continuum topology optimization of structures, regarding the distribution and limitation of discretization errors by considering h-adaptivity.

Design/methodology/approach

The new scheme encompasses, simultaneously, the solution of the optimization problem considering a solid isotropic microstructure with penalization (SIMP) and the application of the h-adaptive finite element method. An analysis of discretization errors is carried out using an a posteriori error estimator based on both the recovery and the abrupt variation of material properties. The estimate of new element sizes is computed by a new h-adaptive technique named “Isotropic Error Density Recovery”, which is based on the construction of the strain energy error density function together with the analytical solution of an optimization problem at the element level.

Findings

Two-dimensional numerical examples, regarding minimization of the structure compliance and constraint over the material volume, demonstrate the capacity of the methodology in controlling and equidistributing discretization errors, as well as obtaining a great definition of the void–material interface, thanks to the h-adaptivity, when compared with results obtained by other methods based on microstructure.

Originality/value

This paper presents a new technique to design a mesh made with isotropic triangular finite elements. Furthermore, this technique is applied to continuum topology optimization problems using a new iterative scheme to obtain solutions with controlled discretization errors, measured in terms of the energy norm, and a great resolution of the material boundary. Regarding the computational cost in terms of degrees of freedom, the present scheme provides approximations with considerable less error if compared to the optimization process on fixed meshes.

Article
Publication date: 13 July 2021

Minchen Zhu, Lijian Wu, Dong Wang, Youtong Fang and Ping Tan

The purpose of this paper is to analytically predict the on-load field distribution and electromagnetic performance (induced voltage, electromagnetic torque, winding inductances…

Abstract

Purpose

The purpose of this paper is to analytically predict the on-load field distribution and electromagnetic performance (induced voltage, electromagnetic torque, winding inductances and unbalanced magnetic force) of dual-stator consequent-pole permanent magnet (DSCPPM) machines using subdomain model accounting for tooth-tip effect. The finite element (FE) results are presented to validate the accuracy of this subdomain model.

Design/methodology/approach

During the preliminary design and optimization of DSCPPM machines, FE method requires numerous computational resources and can be especially time-consuming. Thus, a subdomain model considering the tooth-tip effect is presented in this paper. The whole field domain is divided into four different types of sub-regions, where the analytical solutions of vector potential in each sub-region can be rapidly calculated. The proposed subdomain model can accurately predict the on-load flux density distributions and electromagnetic performance of DSCPPM machines, which is verified by FE method.

Findings

The radial and tangential components of flux densities in each sub-region of DSCPPM machine can be obtained according to the vector potential distribution, which is calculated based on the boundary and interface conditions using variable separation approach. The tooth-tip effect is investigated as well. Moreover, the phase-induced voltage, winding inductances, electromagnetic torque and X-axis/Y-axis components of unbalanced magnetic forces are calculated and compared by FE analysis, where excellent agreements are consistently exhibited.

Originality/value

The on-load field distributions and electromagnetic performance of DSCPPM machines are analytically investigated using subdomain method, which can be beneficial in the process of initial design and optimization for such DSCPPM machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 February 2021

Mingyang Liu, Huifen Zhu, Guangjun Gao, Chen Jiang and G.R Liu

The purpose of this paper is to investigate a novel stabilization scheme to handle convection and pressure oscillation in the process of solving incompressible laminar flows by…

Abstract

Purpose

The purpose of this paper is to investigate a novel stabilization scheme to handle convection and pressure oscillation in the process of solving incompressible laminar flows by finite element method (FEM).

Design/methodology/approach

The semi-implicit stabilization scheme, characteristic-based polynomial pressure projection (CBP3) consists of the Characteristic-Galerkin method and polynomial pressure projection. Theoretically, the proposed scheme works for any type of element using equal-order approximation for velocity and pressure. In this work, linear 3-node triangular and 4-node tetrahedral elements are the focus, which are the simplest but most difficult elements for pressure stabilizations.

Findings

The present paper proposes a new scheme, which can stabilize FEM solution for flows of both low and relatively high Reynolds numbers. And the influence of stabilization parameters of the CBP3 scheme has also been investigated.

Research limitations/implications

The research in this work is limited to the laminar incompressible flow.

Practical implications

The verification and validation of the CBP3 scheme are conducted by several 2 D and 3 D numerical examples. The scheme could be used to deal with more practical fluid problems.

Social implications

The application of scheme to study complex hemodynamics of patient-specific abdominal aortic aneurysm is also presented, which demonstrates its potential to solve bio-flows.

Originality/value

The paper simulated 2 D and 3 D numerical examples with superior results compared to existing results and experiments. The novel CBP3 scheme is verified to be very effective in handling convection and pressure oscillation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 September 2020

Shihao Li, Rongjun Cheng, Hongxia Ge and Pengjun Zheng

The purpose of this study is to explore the influence of the electronic throttle (ET) dynamics and the average speed of multiple preceding vehicles on the stability of traffic…

Abstract

Purpose

The purpose of this study is to explore the influence of the electronic throttle (ET) dynamics and the average speed of multiple preceding vehicles on the stability of traffic flow.

Design/methodology/approach

An extended car-following model integrating the ET dynamics and the average speed of multiple preceding vehicles is presented in this paper. The novel model’s stability conditions are obtained by using the thought of control theory, and the modified Korteweg–de Vries equation is inferred in terms of the nonlinear analysis method. In addition, some simulation experiments are implemented to explore the properties of traffic flow, and the results of these experiments confirm the correctness of theoretical analysis.

Findings

In view of the results of theoretical analysis and numerical simulation, traffic flow will become more stable when the average speed and ET dynamics of multiple preceding vehicles are considered, and the stability of traffic flow will also be enhanced by increasing the number of preceding vehicles considered.

Research limitations/implications

This study leaves the factors such as the mixed traffic flow, the multilane and so on out of account in real road environment, which more or less influences the traffic flow’s stability, so the real traffic environment is not fully reflected.

Originality/value

There is little research integrating ET dynamics and the average velocity of multiple preceding vehicles to study the properties of traffic flow. The enhanced model constructed in this study can better reflect the real traffic, which can also give some theoretical reference for the development of connected and autonomous vehicles.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 April 2020

Xinyue Qi, Rongjun Cheng and Hongxia Ge

This study aims to consider the influence of density difference integral and relative flow difference on traffic flow, a novel two-lane lattice hydrodynamic model is proposed. The…

Abstract

Purpose

This study aims to consider the influence of density difference integral and relative flow difference on traffic flow, a novel two-lane lattice hydrodynamic model is proposed. The stability criterion for the new model is obtained through the linear analysis method.

Design/methodology/approach

The modified Korteweg de Vries (KdV) (mKdV) equation is derived to describe the characteristic of traffic jams near the critical point. Numerical simulations are carried out to explore how density difference integral and relative flow difference influence traffic stability. Numerical and analytical results demonstrate that traffic congestions can be effectively relieved considering density difference integral and relative flow difference.

Findings

The traffic congestions can be effectively relieved considering density difference integral and relative flow difference.

Originality/value

Novel two-lane lattice hydrodynamic model is presented considering density difference integral and relative flow difference. Applying the linear stability theory, the new model’s linear stability is obtained. Through nonlinear analysis, the mKdV equation is derived. Numerical results demonstrate that the traffic flow stability can be efficiently improved by the effect of density difference integral and relative flow difference.

Details

Engineering Computations, vol. 37 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 5 September 2022

Alexey Kalinin and Daria Klishevich

Managing diverse talents has become a necessary part of the human resource management of contemporary organizations. The growing diversity of organizations' workforce makes…

Abstract

Managing diverse talents has become a necessary part of the human resource management of contemporary organizations. The growing diversity of organizations' workforce makes companies reassess their conventional HRM approaches. State-owned enterprises get the increasing attention of talent management scholars since state firms enthusiastically compete for talents. These companies have some particularities that distinguish them from private firms, and there is a need to analyse the existing research on the HRM in state companies which has the potential to add a missing part to the puzzle of managing diverse talents. We study the major topics in the literature on human resource management and talent management in state-owned enterprises, the key findings researchers provide and the gaps in the literature that need to be covered and the resulting research directions for future studies.

Article
Publication date: 26 September 2018

C.H.H.M. Custers, J.W. Jansen, M.C. van Beurden and E.A. Lomonova

The purpose of this paper is to describe a semi-analytical modeling technique to predict eddy currents in three-dimensional (3D) conducting structures with finite dimensions…

Abstract

Purpose

The purpose of this paper is to describe a semi-analytical modeling technique to predict eddy currents in three-dimensional (3D) conducting structures with finite dimensions. Using the developed method, power losses and parasitic forces that result from eddy current distributions can be computed.

Design/methodology/approach

In conducting regions, the Fourier-based solutions are developed to include a spatially dependent conductivity in the expressions of electromagnetic quantities. To validate the method, it is applied to an electromagnetic configuration and the results are compared to finite element results.

Findings

The method shows good agreement with the finite element method for a large range of frequencies. The convergence of the presented model is analyzed.

Research limitations/implications

Because of the Fourier series basis of the solution, the results depend on the considered number of harmonics. When conducting structures are small with respect to the spatial period, the number of harmonics has to be relatively large.

Practical implications

Because of the general form of the solutions, the technique can be applied to a wide range of electromagnetic configurations to predict, e.g. eddy current losses in magnets or wireless energy transfer systems. By adaptation of the conductivity function in conducting regions, eddy current distributions in structures containing holes or slit patterns can be obtained.

Originality/value

With the presented technique, eddy currents in conducting structures of finite dimensions can be modeled. The semi-analytical model is for a relatively low number of harmonics computationally faster than 3D finite element methods. The method has been validated and shown to be computationally accurate.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 23000