Search results

1 – 3 of 3
Article
Publication date: 26 February 2020

Sagar Dnyandev Patil, Yogesh J. Bhalerao and Adik Takale

The purpose of this paper is to analyze the significance of disparate design variables on the mechanical properties of the composite laminate. Four design variables such as…

Abstract

Purpose

The purpose of this paper is to analyze the significance of disparate design variables on the mechanical properties of the composite laminate. Four design variables such as stacking sequence, stacking angle, types of resins and thickness of laminate have been chosen to analyze the impact on mechanical properties of the composite laminate. The detailed investigation is carried out to analyze the effect of a carbon layer in stacking sequence and investigate the impact of various resins on the fastening strength of fibers, stacking angles of the fibers and the thickness of the laminate.

Design/methodology/approach

The Taguchi approach has been adopted to detect the most significant design variable for optimum mechanical properties of the hybrid composite laminate. For this intend, L16 orthogonal array has been composed in statistical software Minitab 17. To investigate an effect of design variables on mechanical properties, signal to noise ratio plots were developed in Minitab. The numerical analysis was done by using the analysis of variance.

Findings

The single parameter optimization gives the optimal combination A1B1C4D2 (i.e. stacking sequence C/G/G/G, stacking angle is 00, the type of resin is newly developed resin [NDR] and laminate thickness is 0.3 cm) for tensile strength; A4B2C4D2 (i.e. stacking sequence G/G/G/C, stacking angle is 450, the type of resin is NDR and laminate thickness is 0.3 cm) for shear strength; and A2B3C4D2 (i.e. stacking sequence G/C/G/G, stacking angle is 900, the type of resin is NDR and thickness is 0.3 cm) for flexural strength. The types of resins and stacking angles are the most significant design variables on the mechanical properties of the composite laminate.

Originality/value

The novelty in this study is the development of new resin called NDR from polyethylene and polyurea group. The comparative study was carried out between NDR and three conventional resins (i.e. polyester, vinyl ester and epoxy). The NDR gives higher fastening strength to the fibers. Field emission scanning electron microscope images illustrate the better fastening ability of NDR compared with epoxy. The NDR provides an excellent strengthening effect on the RCC beam structure along with carbon fiber (Figure 2).

Details

World Journal of Engineering, vol. 17 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 October 2019

Sagar Dnyandev Patil and Yogesh J. Bhalerao

The purpose of this paper is to find the impact of various design variables on the composite shaft, and also the effect of newly developed resin (NDR) on the strength of the…

Abstract

Purpose

The purpose of this paper is to find the impact of various design variables on the composite shaft, and also the effect of newly developed resin (NDR) on the strength of the fibers of the composite shaft.

Design/methodology/approach

The Taguchi method is used to optimize the design variables. Also, GRG approach is used to validate the result.

Findings

NDR improves the bonding strength of fiber than the epoxy resin. With the grey relational analysis (GRA) method, the initial setting (A1B4C4D1) was having grey relational grade 0.957. It was enhanced by using a new optimum combination (A2B2C4D2) to 0.965. It indicates that there is an enhancement in the grade by 0.829 percent. Thus, using the GRA approach of analysis, design variables have been successfully optimized to achieve improved dynamic properties of hybrid composite shaft.

Originality/value

The findings of this research are helping to optimize the design variables for the composite shaft. Also, the NDR gives the good bonding strength of carbon/glass fibers in dynamic loading condition than the epoxy resin.

Details

International Journal of Structural Integrity, vol. 11 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 May 2020

Sagar Dnyandev Patil and Yogesh J. Bhalerao

It is seen that little amount of work on optimization of mechanical properties taking into consideration the combined effect of design variables such as stacking angle, stacking…

Abstract

Purpose

It is seen that little amount of work on optimization of mechanical properties taking into consideration the combined effect of design variables such as stacking angle, stacking sequence, different resins and thickness of composite laminates has been carried out. The focus of this research work is on the optimization of the design variables like stacking angle, stacking sequence, different resins and thickness of composite laminates which affect the mechanical properties of hybrid composites. For this purpose, the Taguchi technique and the method of gray relational analysis (GRA) are used to identify the optimum combination of design variables. In this case, the effect of the abovementioned design variables, particularly of the newly developed resin (NDR) on mechanical properties of hybrid composites has been investigated.

Design/methodology/approach

The Taguchi method is used for design of experiments and with gray relational grade (GRG) approach, the optimization is done.

Findings

From the experimental analysis and optimization study, it was seen that the NDR gives excellent bonding strength of fibers resulting in enhanced mechanical properties of hybrid composite laminates. With the GRA method, the initial setting (A3B2C4D2) was having GRG 0.866. It was increased by using a new optimum combination (A2B2C4D1) to 0.878. It means that there is an increment in the grade by 1.366%. Therefore, using the GRA approach of analysis, design variables have been successfully optimized to achieve enhanced mechanical properties of hybrid composite laminates.

Originality/value

This is an original research work.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 3 of 3