Search results

1 – 3 of 3
Article
Publication date: 5 March 2018

Hakim Sadou, Tarik Hacib, Hulusi Acikgoz, Yann Le-Bihan, Olivier Meyer and Mohamed Rachid Mekideche

The principle of microwave characterization of dielectric materials using open-ended coaxial line probe is to link the dielectric properties of the sample under test to the…

Abstract

Purpose

The principle of microwave characterization of dielectric materials using open-ended coaxial line probe is to link the dielectric properties of the sample under test to the measurements of the probe admittance (Y(f) = G(f)+ jB(f )). The purpose of this paper is to develop an alternative inversion tool able to predict the evolution of the complex permittivity (ε = ε′ – jε″) on a broad band frequency (f from 1 MHz to 1.8 GHz).

Design/methodology/approach

The inverse problem is solved using adaptive network based fuzzy inference system (ANFIS) which needs the creation of a database for its learning. Unfortunately, train ANFIS using f, G and B as inputs has given unsatisfying results. Therefore, an inputs selection procedure is used to select the three optimal inputs from new inputs, created mathematically from original ones, using the Jang method.

Findings

Inversion results of measurements give, after training, in real time the complex permittivity of solid and liquid samples with a very good accuracy which prove the applicability of ANFIS to solve inverse problems in microwave characterization.

Originality/value

The originality of this paper consists on the use of ANFIS with input selection procedure based on the Jang method to solve the inverse problem where the three optimal inputs are selected from 26 new inputs created mathematically from original ones (f, G and B).

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 April 2022

Yao Pei, Lionel Pichon, Mohamed Bensetti and Yann Le Bihan

The purpose of this study is to decrease the computation time that the large number of simulations involved in a parametric sweep when the model is in a three-dimensional…

Abstract

Purpose

The purpose of this study is to decrease the computation time that the large number of simulations involved in a parametric sweep when the model is in a three-dimensional environment.

Design/methodology/approach

In this paper, a new methodology combining the PCE and a controlled, elitist genetic algorithm is proposed to design IPT systems. The relationship between the quantities of interest (mutual inductance and ferrite volume) and structural parameters (ferrite dimensions) is expressed by a PCE metamodel. Then, two objective functions corresponding to mutual inductance and ferrite volume are defined. These are combined together to obtain optimal parameters with a trade-off between these outputs.

Findings

According to the number of individuals and the generations defined in the optimization algorithm in this paper, it needs to calculate 20,000 times in a 3D environment, which is quite time-consuming. But for PCE metamodel of mutual inductance M, it requires at least 100 times of calculations. Afterward, the evaluation of M based on the PCE metamodel requires 1 or 2 s. So compared to a conventional optimization based on the 3D model, it is easier to get optimized results with this approach and it saves a lot of computation time.

Originality/value

The multiobjective optimization based on PCEs could be helpful to perform the optimization when considering the system in a realistic 3D environment involving many parameters with low computation time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 May 2016

Israel Tuval, Dan Givoli and Ehud Behar

The purpose of this paper is to propose a computational model for thin layers, for problems of linear time-dependent heat conduction. The thin layer is replaced by a…

Abstract

Purpose

The purpose of this paper is to propose a computational model for thin layers, for problems of linear time-dependent heat conduction. The thin layer is replaced by a zero-thickness interface. The advantage of the new model is that it saves the need to construct and use a fine mesh inside the layer and in regions adjacent to it, and thus leads to a reduction in the computational effort associated with implicit or explicit finite element schemes.

Design/methodology/approach

Special asymptotic models have been proposed for linear heat transfer and linear elasticity, to handle thin layers. In these models the thin layer is replaced by an interface with zero thickness, and specific jump conditions are imposed on this interface in order to represent the special effect of the layer. One such asymptotic interface model is the first-order Bövik-Benveniste model. In a paper by Sussmann et al., this model was incorporated in a FE formulation for linear steady-state heat conduction problems, and was shown to yield an accurate and efficient computational scheme. Here, this work is extended to the time-dependent case.

Findings

As shown here, and demonstrated by numerical examples, the new model offers a cost-effective way of handling thin layers in linear time-dependent heat conduction problems. The hybrid asymptotic-FE scheme can be used with either implicit or explicit time stepping. Since the formulation can easily be symmetrized by one of several techniques, the lack of self-adjointness of the original formulation does not hinder an accurate and efficient solution.

Originality/value

Most of the literature on asymptotic models for thin layers, replacing the layer by an interface, is analytic in nature. The proposed model is presented in a computational context, fitting naturally into a finite element framework, with both implicit and explicit time stepping, while saving the need for expensive mesh construction inside the layer and in its vicinity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 3 of 3