Search results

1 – 10 of over 6000
Article
Publication date: 6 February 2024

Chi Zhang, Kun He, Wenjie Zhang, Ting Jin and Yibin Ao

To further promote application of BIM technology in construction of prefabricated buildings, influencing factors and evolution laws of willingness to apply BIM technology are…

Abstract

Purpose

To further promote application of BIM technology in construction of prefabricated buildings, influencing factors and evolution laws of willingness to apply BIM technology are explored from the perspective of willingness of participants.

Design/methodology/approach

In this paper, a tripartite game model involving the design firm, component manufacturer and construction firm is constructed and a system dynamics method is used to explore the influencing factors and game evolution path of three parties' application of BIM technology, from three perspectives, cost, benefit and risk.

Findings

The government should formulate measures for promoting the application of BIM according to different BIM application willingness of the parties. When pursuing deeper BIM application, the design firm should pay attention to reducing the speculative benefits of the component manufacturer and the construction firm. The design firm and the component manufacturer should pay attention to balancing the cost and benefit of the design firm while enhancing collaborative efforts. When the component manufacturer and the construction firm cooperate closely, it is necessary to pay attention to balanced distribution of interests of both parties and lower the risk of BIM application.

Originality/value

This study fills a research gap by comprehensively investigating the influencing factors and game evolution paths of willingness of the three parties to apply BIM technology to prefabricated buildings. The research helps to effectively improve the building quality and construction efficiency, and is expected to contribute to the sustainability of built environment in the context of circular economy in China.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 5 October 2022

Dongbei Bai, Lei Ye, ZhengYuan Yang and Gang Wang

Global climate change characterized by an increase in temperature has become the focus of attention all over the world. China is a sensitive and significant area of global climate…

12736

Abstract

Purpose

Global climate change characterized by an increase in temperature has become the focus of attention all over the world. China is a sensitive and significant area of global climate change. This paper specifically aims to examine the association between agricultural productivity and the climate change by using China’s provincial agricultural input–output data from 2000 to 2019 and the climatic data of the ground meteorological stations.

Design/methodology/approach

The authors used the three-stage spatial Durbin model (SDM) model and entropy method for analysis of collected data; further, the authors also empirically tested the climate change marginal effect on agricultural productivity by using ordinary least square and SDM approaches.

Findings

The results revealed that climate change has a significant negative effect on agricultural productivity, which showed significance in robustness tests, including index replacement, quantile regression and tail reduction. The results of this study also indicated that by subdividing the climatic factors, annual precipitation had no significant impact on the growth of agricultural productivity; further, other climatic variables, including wind speed and temperature, had a substantial adverse effect on agricultural productivity. The heterogeneity test showed that climatic changes ominously hinder agricultural productivity growth only in the western region of China, and in the eastern and central regions, climate change had no effect.

Practical implications

The findings of this study highlight the importance of various social connections of farm households in designing policies to improve their responses to climate change and expand land productivity in different regions. The study also provides a hypothetical approach to prioritize developing regions that need proper attention to improve crop productivity.

Originality/value

The paper explores the impact of climate change on agricultural productivity by using the climatic data of China. Empirical evidence previously missing in the body of knowledge will support governments and researchers to establish a mechanism to improve climate change mitigation tools in China.

Details

International Journal of Climate Change Strategies and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 31 May 2024

Monojit Das, V.N.A. Naikan and Subhash Chandra Panja

The aim of this paper is to review the literature on the prediction of cutting tool life. Tool life is typically estimated by predicting the time to reach the threshold flank wear…

Abstract

Purpose

The aim of this paper is to review the literature on the prediction of cutting tool life. Tool life is typically estimated by predicting the time to reach the threshold flank wear width. The cutting tool is a crucial component in any machining process, and its failure affects the manufacturing process adversely. The prediction of cutting tool life by considering several factors that affect tool life is crucial to managing quality, cost, availability and waste in machining processes.

Design/methodology/approach

This study has undertaken the critical analysis and summarisation of various techniques used in the literature for predicting the life or remaining useful life (RUL) of the cutting tool through monitoring the tool wear, primarily flank wear. The experimental setups that comprise diversified machining processes, including turning, milling, drilling, boring and slotting, are covered in this review.

Findings

Cutting tool life is a stochastic variable. Tool failure depends on various factors, including the type and material of the cutting tool, work material, cutting conditions and machine tool. Thus, the life of the cutting tool for a particular experimental setup must be modelled by considering the cutting parameters.

Originality/value

This submission discusses tool life prediction comprehensively, from monitoring tool wear, primarily flank wear, to modelling tool life, and this type of comprehensive review on cutting tool life prediction has not been reported in the literature till now. The future suggestions provided in this review are expected to provide avenues to solve the unexplored challenges in this field.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 27 July 2023

Ning Huang, Qiang Du, Libiao Bai and Qian Chen

In recent decades, infrastructure has continued to develop as an important basis for social development and people's lives. Resource management of these large-scale projects has…

Abstract

Purpose

In recent decades, infrastructure has continued to develop as an important basis for social development and people's lives. Resource management of these large-scale projects has been immensely concerned because dozens of construction enterprises (CEs) often work together. In this situation, resource collaboration among enterprises has become a key measure to ensure project implementation. Thus, this study aims to propose a systematic multi-agent resource collaborative decision-making optimization model for large projects from a matching perspective.

Design/methodology/approach

The main contribution of this work was an advancement of the current research by: (1) generalizing the resource matching decision-making problem and quantifying the relationship between CEs. (2) Based on the matching domain, the resource input costs and benefits of each enterprise in the associated group were comprehensively analyzed to build the mathematical model, which also incorporated prospect theory to map more realistic decisions. (3) According to the influencing factors of resource decision-making, such as cost, benefit and attitude of decision-makers, determined the optimal resource input in different situations.

Findings

Numerical experiments were used to verify the effectiveness of the multi-agent resource matching decision (MARMD) method in this study. The results indicated that this model could provide guidance for optimal decision-making for each participating enterprise in the resource association group under different situations. And the results showed the psychological preference of decision-makers has an important influence on decision performance.

Research limitations/implications

While the MARMD method has been proposed in this research, MARMD still has many limitations. A more detailed matching relationship between different resource types in CEs is still not fully analyzed, and relevant studies about more accurate parameters of decision-makers’ psychological preferences should be conducted in this area in the future.

Practical implications

Compared with traditional projects, large-scale engineering construction has the characteristics of huge resource consumption and more participants. While decision-makers can determine the matching relationship between related enterprises, this is ambiguous and the wider range will vary with more participants or complex environment. The MARMD method provided in this paper is an effective methodological tool with clearer decision-making positioning and stronger actual operability, which could provide references for large-scale project resource management.

Social implications

Large-scale engineering is complex infrastructure projects that ensure national security, increase economic development, improve people's lives and promote social progress. During the implementation of large-scale projects, CEs realize value-added through resource exchange and integration. Studying the optimal collaborative decision of multi-agent resources from a matching perspective can realize the improvement of resource transformation efficiency and promote the development of large-scale engineering projects.

Originality/value

The current research on engineering resources decision-making lacks a matching relationship, which leads to unclear decision objectives, ambiguous decision processes and poor operability decision methods. To solve these issues, a novel approach was proposed to reveal the decision mechanism of multi-agent resource optimization in large-scale projects. This paper could bring inspiration to the research of large-scale project resource management.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 15 May 2024

Dan Liu, Tiange Liu and Yuting Zheng

By studying the green development efficiency (GDE) of 33 cities in the provinces of Jiangsu, Zhejiang, and Fujian in China, this study strives to conduct an analysis of the…

Abstract

Purpose

By studying the green development efficiency (GDE) of 33 cities in the provinces of Jiangsu, Zhejiang, and Fujian in China, this study strives to conduct an analysis of the sustainable practices implemented in these developed regions, and derive valuable insights that can foster the promotion of green transformation.

Design/methodology/approach

First, the urban green development system (GDS) was decomposed into the economic benefit subsystem (EBS), social benefit subsystem (SBS), and pollution control subsystem (PCS). Then, a mixed network SBM model was proposed to evaluate the GDE during 20152020, with Moran’s I and Bootstrap truncated regression model subsequently applied to measure the spatial characteristics and driving factors of efficiency.

Findings

Subsystem efficiency presents a distribution trend of PCS > EBS > SBS. There is a particular spatial aggregation effect in EBS efficiency, whereas SBS and PCS efficiencies have no significant spatial autocorrelation. Furthermore, urbanization level contributes significantly to the efficiency of all subsystems; industrial structure, energy consumption, and technological innovation play a crucial role in EBS and SBS; external openness is a pivotal factor in SBS; and environmental regulation has a significant effect on PCS.

Originality/value

This study further decomposes the black box of GDS into subsystems including the economy, society, and environment. Additionally, by employing a mixed network SBM model and Bootstrap truncated regression model to investigate efficiency and its driving factors from the subsystem perspective, it endeavors to derive more detailed research conclusions and policy implications.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 12 October 2023

Xiaoyu Liu, Feng Xu, Zhipeng Zhang and Kaiyu Sun

Fall accidents can cause casualties and economic losses in the construction industry. Fall portents, such as loss of balance (LOB) and sudden sways, can result in fatal, nonfatal…

Abstract

Purpose

Fall accidents can cause casualties and economic losses in the construction industry. Fall portents, such as loss of balance (LOB) and sudden sways, can result in fatal, nonfatal or attempted fall accidents. All of them are worthy of studying to take measures to prevent future accidents. Detecting fall portents can proactively and comprehensively help managers assess the risk to workers as well as in the construction environment and further prevent fall accidents.

Design/methodology/approach

This study focused on the postures of workers and aimed to directly detect fall portents using a computer vision (CV)-based noncontact approach. Firstly, a joint coordinate matrix generated from a three-dimensional pose estimation model is employed, and then the matrix is preprocessed by principal component analysis, K-means and pre-experiments. Finally, a modified fusion K-nearest neighbor-based machine learning model is built to fuse information from the x, y and z axes and output the worker's pose status into three stages.

Findings

The proposed model can output the worker's pose status into three stages (steady–unsteady–fallen) and provide corresponding confidence probabilities for each category. Experiments conducted to evaluate the approach show that the model accuracy reaches 85.02% with threshold-based postprocessing. The proposed fall-portent detection approach can extract the fall risk of workers in the both pre- and post-event phases based on noncontact approach.

Research limitations/implications

First, three-dimensional (3D) pose estimation needs sufficient information, which means it may not perform well when applied in complicated environments or when the shooting distance is extremely large. Second, solely focusing on fall-related factors may not be comprehensive enough. Future studies can incorporate the results of this research as an indicator into the risk assessment system to achieve a more comprehensive and accurate evaluation of worker and site risk.

Practical implications

The proposed machine learning model determines whether the worker is in a status of steady, unsteady or fallen using a CV-based approach. From the perspective of construction management, when detecting fall-related actions on construction sites, the noncontact approach based on CV has irreplaceable advantages of no interruption to workers and low cost. It can make use of the surveillance cameras on construction sites to recognize both preceding events and happened accidents. The detection of fall portents can help worker risk assessment and safety management.

Originality/value

Existing studies using sensor-based approaches are high-cost and invasive for construction workers, and others using CV-based approaches either oversimplify by binary classification of the non-entire fall process or indirectly achieve fall-portent detection. Instead, this study aims to detect fall portents directly by worker's posture and divide the entire fall process into three stages using a CV-based noncontact approach. It can help managers carry out more comprehensive risk assessment and develop preventive measures.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 February 2024

Zhuang Zhang and You Hua Chen

Numerical literature shows that agricultural insurance can affect pesticide investments, but few of them are devoted to explain how agricultural insurance affects farmers’…

Abstract

Purpose

Numerical literature shows that agricultural insurance can affect pesticide investments, but few of them are devoted to explain how agricultural insurance affects farmers’ selection on green or traditional pesticides. This paper aims to develop a theoretical model about how agricultural insurance influences on green pesticides selections and tests our conclusions by using the data from China land economic survey (CLES) from 2020 to 2021.

Design/methodology/approach

We employ probit model to capture the effects of agricultural insurance on green pesticides adoption.

Findings

We indicate that green pesticides have a stronger effect on stabilizing yield and increasing income than traditional pesticides, but there are still risks disturbing farmers’ decisions on green pesticides usage. By providing premium subsidies after the farmers are affected by natural risk, agricultural insurance improves the farmers’ expected income and encourages farmers to use green pesticides. Further, we further confirm these conclusions by considering different scenarios such as climate risks, farmers’ entrepreneurship and credit constraints. We find that the effects are more salient if croplands are under higher natural risks and, farmers are equipped with entrepreneurship and formal credit. This paper implies that the agricultural insurance decoupled with green technologies also have salient positive effects on agricultural pollution control.

Originality/value

The potential contributions of this paper can be outlined in three aspects in detail. Firstly, this paper aims to revel the effects of agricultural insurance on pesticide selection by structuring a general theoretical model. By using the CLES data from 2020 to 2021, we confirm that agricultural insurance increases the probability for adopting green pesticides. Secondly, this paper discusses the effects of farmers’ characteristics on the results and finds that if farmers have entrepreneurship, the effects of agricultural insurance on green pesticide usage will be more salient. Thirdly, it uncovers some practices in China, which will supply experiences for other developing countries. For example, this paper further demonstrates that “insurance + credit” plan the present Chinese government carried out will be an important measure for strengthening effects of agricultural insurance on green pesticides usage. Moreover, it shows that decouple agricultural policies will also guide farmers to use green technologies eventually if the technologies are reliable and farmers can afford.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 22 August 2024

Jiawei Liu, Zi Xiong, Yi Jiang, Yongqiang Ma, Wei Lu, Yong Huang and Qikai Cheng

Fine-tuning pre-trained language models (PLMs), e.g. SciBERT, generally require large numbers of annotated data to achieve state-of-the-art performance on a range of NLP tasks in…

35

Abstract

Purpose

Fine-tuning pre-trained language models (PLMs), e.g. SciBERT, generally require large numbers of annotated data to achieve state-of-the-art performance on a range of NLP tasks in the scientific domain. However, obtaining fine-tuning data for scientific NLP tasks is still challenging and expensive. In this paper, the authors propose the mix prompt tuning (MPT), which is a semi-supervised method aiming to alleviate the dependence on annotated data and improve the performance of multi-granularity academic function recognition tasks.

Design/methodology/approach

Specifically, the proposed method provides multi-perspective representations by combining manually designed prompt templates with automatically learned continuous prompt templates to help the given academic function recognition task take full advantage of knowledge in PLMs. Based on these prompt templates and the fine-tuned PLM, a large number of pseudo labels are assigned to the unlabelled examples. Finally, the authors further fine-tune the PLM using the pseudo training set. The authors evaluate the method on three academic function recognition tasks of different granularity including the citation function, the abstract sentence function and the keyword function, with data sets from the computer science domain and the biomedical domain.

Findings

Extensive experiments demonstrate the effectiveness of the method and statistically significant improvements against strong baselines. In particular, it achieves an average increase of 5% in Macro-F1 score compared with fine-tuning, and 6% in Macro-F1 score compared with other semi-supervised methods under low-resource settings.

Originality/value

In addition, MPT is a general method that can be easily applied to other low-resource scientific classification tasks.

Details

The Electronic Library , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-0473

Keywords

Article
Publication date: 19 August 2024

Walaa Metwally Kandil, Fawzi H. Zarzoura, Mahmoud Salah Goma and Mahmoud El-Mewafi El-Mewafi Shetiwi

This study aims to present a new rapid enhancement digital elevation model (DEM) framework using Google Earth Engine (GEE), machine learning, weighted interpolation and spatial…

Abstract

Purpose

This study aims to present a new rapid enhancement digital elevation model (DEM) framework using Google Earth Engine (GEE), machine learning, weighted interpolation and spatial interpolation techniques with ground control points (GCPs), where high-resolution DEMs are crucial spatial data that find extensive use in many analyses and applications.

Design/methodology/approach

First, rapid-DEM imports Shuttle Radar Topography Mission (SRTM) data and Sentinel-2 multispectral imagery from a user-defined time and area of interest into GEE. Second, SRTM with the feature attributes from Sentinel-2 multispectral imagery is generated and used as input data in support vector machine classification algorithm. Third, the inverse probability weighted interpolation (IPWI) approach uses 12 fixed GCPs as additional input data to assign the probability to each pixel of the image and generate corrected SRTM elevations. Fourth, gridding the enhanced DEM consists of regular points (E, N and H), and the contour interval is 5 m. Finally, densification of enhanced DEM data with GCPs is obtained using global positioning system technique through spatial interpolations such as Kriging, inverse distance weighted, modified Shepard’s method and triangulation with linear interpolation techniques.

Findings

The results were compared to a 1-m vertically accurate reference DEM (RD) obtained by image matching with Worldview-1 stereo satellite images. The results of this study demonstrated that the root mean square error (RMSE) of the original SRTM DEM was 5.95 m. On the other hand, the RMSE of the estimated elevations by the IPWI approach has been improved to 2.01 m, and the generated DEM by Kriging technique was 1.85 m, with a reduction of 68.91%.

Originality/value

A comparison with the RD demonstrates significant SRTM improvements. The suggested method clearly reduces the elevation error of the original SRTM DEM.

Article
Publication date: 23 May 2023

Dezhi Li, Lugang Yu, Guanying Huang, Shenghua Zhou, Haibo Feng and Yanqing Wang

To propose a new investment-income valuation model by real options approach (ROA) for old community renewal (OCR) projects, which could help the government attract private…

Abstract

Purpose

To propose a new investment-income valuation model by real options approach (ROA) for old community renewal (OCR) projects, which could help the government attract private capital's participation.

Design/methodology/approach

The new model is proposed by identifying the types of options private capital has in the OCR project, selecting the option model most suitable for private capital investment decisions, improving the valuation model through the triangular fuzzy numbers to take into account the uncertainty and flexibility, and demonstrating the feasibility of the calculation model through an actual OCR project case.

Findings

The new model can valuate OCR projects more accurately based on considering uncertainty and flexibility, compared with conventional methods that often underestimate the value of OCR projects.

Practical implications

The investment-income of OCR projects shall be re-valuated from the lens of real options, which could help reveal more real benefits beyond the capital growth of OCR projects, enable the government to attract private capital's investment in OCR, and alleviate government fiscal pressure.

Originality/value

The proposed OCR-oriented investment-income valuation model systematically analyzes the applicability of real option value (ROV) to OCR projects, innovatively integrates the ROV and the net present value (NPV) as expanded net present value (ENPV), and accurately evaluate real benefits in comparison with existing models. Furthermore, the newly proposed model holds the potential to be transferred to various social welfare projects as a tool to attract private capital's participation.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 6000