Search results

1 – 10 of over 22000
Article
Publication date: 7 July 2023

Xiaojie Xu and Yun Zhang

The Chinese housing market has witnessed rapid growth during the past decade and the significance of housing price forecasting has undoubtedly elevated, becoming an important…

Abstract

Purpose

The Chinese housing market has witnessed rapid growth during the past decade and the significance of housing price forecasting has undoubtedly elevated, becoming an important issue to investors and policymakers. This study aims to examine neural networks (NNs) for office property price index forecasting from 10 major Chinese cities for July 2005–April 2021.

Design/methodology/approach

The authors aim at building simple and accurate NNs to contribute to pure technical forecasts of the Chinese office property market. To facilitate the analysis, the authors explore different model settings over algorithms, delays, hidden neurons and data-spitting ratios.

Findings

The authors reach a simple NN with three delays and three hidden neurons, which leads to stable performance of about 1.45% average relative root mean square error across the 10 cities for the training, validation and testing phases.

Originality/value

The results could be used on a standalone basis or combined with fundamental forecasts to form perspectives of office property price trends and conduct policy analysis.

Details

Journal of Financial Management of Property and Construction , vol. 29 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Open Access
Article
Publication date: 4 April 2023

Xiaojie Xu and Yun Zhang

Forecasts of commodity prices are vital issues to market participants and policy makers. Those of corn are of no exception, considering its strategic importance. In the present…

1140

Abstract

Purpose

Forecasts of commodity prices are vital issues to market participants and policy makers. Those of corn are of no exception, considering its strategic importance. In the present study, the authors assess the forecast problem for the weekly wholesale price index of yellow corn in China during January 1, 2010–January 10, 2020 period.

Design/methodology/approach

The authors employ the nonlinear auto-regressive neural network as the forecast tool and evaluate forecast performance of different model settings over algorithms, delays, hidden neurons and data splitting ratios in arriving at the final model.

Findings

The final model is relatively simple and leads to accurate and stable results. Particularly, it generates relative root mean square errors of 1.05%, 1.08% and 1.03% for training, validation and testing, respectively.

Originality/value

Through the analysis, the study shows usefulness of the neural network technique for commodity price forecasts. The results might serve as technical forecasts on a standalone basis or be combined with other fundamental forecasts for perspectives of price trends and corresponding policy analysis.

Details

EconomiA, vol. 24 no. 1
Type: Research Article
ISSN: 1517-7580

Keywords

Open Access
Article
Publication date: 29 March 2024

Runze Ling, Ailing Pan and Lei Xu

This study examines the impact of China’s mixed-ownership reform on the innovation of non-state-owned acquirers, with a particular focus on the impact on firms with high financing…

Abstract

Purpose

This study examines the impact of China’s mixed-ownership reform on the innovation of non-state-owned acquirers, with a particular focus on the impact on firms with high financing constraints, low-quality accounting information or less tangible assets.

Design/methodology/approach

We use a proprietary dataset of firms listed on the Shanghai and Shenzhen Stock Exchanges to investigate the impact of mixed ownership reform on non-state-owned enterprise (non-SOE) innovation. We employ regression analysis to examine the association between mixed ownership reform and firm innovation.

Findings

The study finds that non-state-owned firms can improve innovation by acquiring equity in state-owned enterprises (SOEs) under the reform. Eased financing constraints, lowered financing costs, better access to tax incentives or government subsidies, lowered agency costs, better accounting information quality and more credit loans are underlying the impact. Additionally, cross-ownership connections amongst non-SOE executives and government intervention strengthen the impact, whilst regional marketisation weakens it.

Originality/value

This study adds to the literature on the association between mixed ownership reform and firm innovation by focussing on the conditions under which this impact is stronger. It also sheds light on the policy implications for SOE reforms in emerging economies.

Details

China Accounting and Finance Review, vol. 26 no. 2
Type: Research Article
ISSN: 1029-807X

Keywords

Article
Publication date: 15 May 2019

Changjin Xu, Maoxin Liao and Peiluan Li

The purpose of this paper is to investigate the weighted pseudo-almost periodic solutions of shunting inhibitory cellular neural networks (SICNNs) with time-varying delays and…

Abstract

Purpose

The purpose of this paper is to investigate the weighted pseudo-almost periodic solutions of shunting inhibitory cellular neural networks (SICNNs) with time-varying delays and distributed delays.

Design/methodology/approach

The principle of weighted pseudo-almost periodic functions and some new mathematical analysis skills are applied.

Findings

A set of sufficient criteria which guarantee the existence and exponential stability of the weighted pseudo-almost periodic solutions of the considered SICNNs are established.

Originality/value

The derived results of this paper are new and complement some earlier works. The innovation of this paper concludes two points: a new sufficient criteria guaranteeing the existence and exponential stability of the weighted pseudo-almost periodic solutions of SICNNs are established; and the ideas of this paper can be applied to investigate some other similar neural networks.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 12 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 15 November 2021

Xiaojie Xu and Yun Zhang

Chinese housing market has been growing fast during the past decade, and price-related forecasting has turned to be an important issue to various market participants, including…

323

Abstract

Purpose

Chinese housing market has been growing fast during the past decade, and price-related forecasting has turned to be an important issue to various market participants, including the people, investors and policy makers. Here, the authors approach this issue by researching neural networks for rent index forecasting from 10 major cities for March 2012 to May 2020. The authors aim at building simple and accurate neural networks to contribute to pure technical forecasting of the Chinese rental housing market.

Design/methodology/approach

To facilitate the analysis, the authors examine different model settings over the algorithm, delay, hidden neuron and data spitting ratio.

Findings

The authors reach a rather simple neural network with six delays and two hidden neurons, which leads to stable performance of 1.4% average relative root mean square error across the ten cities for the training, validation and testing phases.

Originality/value

The results might be used on a standalone basis or combined with fundamental forecasting to form perspectives of rent price trends and conduct policy analysis.

Details

Journal of Economic Studies, vol. 49 no. 8
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 9 August 2022

Bingjun Li, Shuhua Zhang, Wenyan Li and Yifan Zhang

Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the…

Abstract

Purpose

Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the broad applicability and effectiveness of the technique from different aspects and providing a new means to solve agricultural science problems. The analysis of the connotation and trend of the application of grey modeling technique in agricultural science research contributes to the enrichment of grey technique and the development of agricultural science in multiple dimensions.

Design/methodology/approach

Based on the relevant literature selected from China National Knowledge Infrastructure, the Web of Science, SpiScholar and other databases in the past 37 years (1985–2021), this paper firstly applied the bibliometric method to quantitatively visualize and systematically analyze the trend of publication, productive author, productive institution, and highly cited literature. Then, the literature is combed by the application of different grey modeling techniques in agricultural science research, and the literature research progress is systematically analyzed.

Findings

The results show that grey model technology has broad prospects in the field of agricultural science research. Agricultural universities and research institutes are the main research forces in the application of grey model technology in agricultural science research, and have certain inheritance. The application of grey model technology in agricultural science research has wide applicability and precise practicability.

Originality/value

By analyzing and summarizing the application trend of grey model technology in agricultural science research, the research hotspot, research frontier and valuable research directions of grey model technology in agricultural science research can be more clearly grasped.

Details

Grey Systems: Theory and Application, vol. 12 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 15 March 2022

Jian Xu, Muhammad Haris and Feng Liu

The purpose of this paper is to investigate the impact of intellectual capital (IC) and its components (human, structural, relational and innovation capitals) on financial…

Abstract

Purpose

The purpose of this paper is to investigate the impact of intellectual capital (IC) and its components (human, structural, relational and innovation capitals) on financial performance (FP) at different life cycle stages.

Design/methodology/approach

The study uses the data from Chinese manufacturing listed companies during 2014–2018. The modified value added intellectual coefficient (MVAIC) model is employed as the measurement of IC efficiency. Finally, multiple regression analysis is used to test the research hypotheses.

Findings

This study shows that the impact of IC on FP is different across life cycle stages. Specifically, at the birth stage, human capital (HC), structural capital (SC) and innovation capital (INC) have a positive impact on FP. At the growth and mature stages, all IC components contribute to FP improvement. HC and SC play an important role at the revival stage, while only HC positively affects FP at the decline stage.

Practical implications

The findings may help corporate managers to make optimal strategies to improve FP by effective utilization of IC resources in the complex and competitive business environment. Meanwhile, companies can invest in the core elements of IC at different stages of development, so as to maximize the contribution of IC to company value.

Originality/value

This is among the few studies to explore the impact of IC on FP of manufacturing listed companies in the Chinese context from the perspective of life cycle. It also makes novel contributions in measuring IC by the MVAIC model with the inclusion of relational capital and INC that are largely neglected in previous research.

Details

Journal of Intellectual Capital, vol. 24 no. 3
Type: Research Article
ISSN: 1469-1930

Keywords

Article
Publication date: 18 June 2019

Ying Ma, Kang Ping, Chen Wu, Long Chen, Hui Shi and Dazhi Chong

The Internet of Things (IoT) has attracted a lot of attention in both industrial and academic fields for recent years. Artificial intelligence (AI) has developed rapidly in recent…

1664

Abstract

Purpose

The Internet of Things (IoT) has attracted a lot of attention in both industrial and academic fields for recent years. Artificial intelligence (AI) has developed rapidly in recent years as well. AI naturally combines with the Internet of Things in various ways, enabling big data applications, machine learning algorithms, deep learning, knowledge discovery, neural networks and other technologies. The purpose of this paper is to provide state of the art in AI powered IoT and study smart public services in China.

Design/methodology/approach

This paper reviewed the articles published on AI powered IoT from 2009 to 2018. Case study as a research method has been chosen.

Findings

The AI powered IoT has been found in the areas of smart cities, healthcare, intelligent manufacturing and so on. First, this study summarizes recent research on AI powered IoT systematically; and second, this study identifies key research topics related to the field and real-world applications.

Originality/value

This research is of importance and significance to both industrial and academic fields researchers who need to understand the current and future development of intelligence in IoT. To the best of authors’ knowledge, this is the first study to review the literature on AI powered IoT from 2009 to 2018. This is also the first literature review on AI powered IoT with a case study of smart public service in China.

Details

Library Hi Tech, vol. 38 no. 1
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 11 April 2023

Md. Jahidur Rahman and Hongyi Liu

This study aims to examine the impact of intellectual capital (IC) and its three components (human, structural and relational capital) on corporation performance in the Chinese…

Abstract

Purpose

This study aims to examine the impact of intellectual capital (IC) and its three components (human, structural and relational capital) on corporation performance in the Chinese transportation industry. In addition, this study also investigates auditor characteristics (both Big-N and non-Big-N auditors) as a moderating role to examine the relationship between IC and corporate performance.

Design/methodology/approach

The data include 398 firm-year observations of transportation companies listed on the Shanghai and Shenzhen Stock Exchange from 2011 to 2020. Value-added intellectual coefficient (VAIC) model and its modified version (MVAIC) are applied to measure IC efficiency. Finally, the fixed effects regression analysis is used to mitigate the endogeneity issue. To investigate the moderating effect of auditor characteristics, the authors divide the samples based on the clients audited by Big-4 and non-Big-4 firms.

Findings

This study reveals that IC can enhance firm performance in China’s transportation sector. Overall, findings indicate that on the whole, IC has a positive and significant impact on corporation profitability and productivity. Human capital and physical and financial assets (capital employed) play highly important roles, but structural capital has no significant impact. The authors also found that auditor characteristics play an important moderating role in the connection between IC and corporate performance. For example, the positive association between IC and corporate performance is more pronounced when Big-4 auditors audit client firms. At the same time, the authors found a negative relationship between IC and firm performance when non-Big-4 auditors audit client firms.

Practical implications

Managers must understand that several components of IC have a total effect on corporate financial performance. Therefore, managers can dedicate more resources to such components based on the performance outcomes to emphasize their business strategies.

Originality/value

This study is the first empirical analysis of the impact of IC and its components on corporation performance in the transportation sector in China, an emerging market. Previous studies mainly focus on developed countries’ high technology and financial industries sectors but the impact of IC in transportation industry largely remains unknown. Thus, the present findings contribute to IC literature by revealing several underlying mechanisms by which the components of IC help achieve good firm performance.

Details

Asian Review of Accounting, vol. 31 no. 4
Type: Research Article
ISSN: 1321-7348

Keywords

1 – 10 of over 22000