Search results

1 – 3 of 3
Article
Publication date: 5 March 2018

Xiaobin Lian, Jiafu Liu, Laohu Yuan and Naigang Cui

The purpose of this paper is to present a solution for the uncertain fault with the propulsion subsystem of satellite formation, using the Lur’e differential inclusion linear…

182

Abstract

Purpose

The purpose of this paper is to present a solution for the uncertain fault with the propulsion subsystem of satellite formation, using the Lur’e differential inclusion linear state observers (DILSOs) and fuzzy wavelet neural network (FWNN) to perform fault detection and diagnosis.

Design/methodology/approach

The uncertain fault system cannot be described based on the accurate differential equations. The set-value mapping is introduced into the state equations to solve the problem of uncertainty, but it will cause output uncertainty. The problem can be solved by linearization of Lur’e differential inclusion state observers. The Lur’e DILSOs can be used to detect uncertain fault. The fault isolation and estimation can be performed using the FWNN.

Findings

The mixed approach from fault detection and diagnosis has featured fast and correct to found the uncertain fault. The simulation results to indicate that the methods of design are not only effective but also have the advantages of good approximation effect, fast detection speed, relatively simple structure and prior knowledge and realization of adaptive learning.

Research limitations/implications

The hybrid algorithm can be extensively applied to engineering practice and find uncertain faults of the propulsion subsystem of satellite formation promptly.

Originality/value

This paper provides a fast, effective and simple mixed fault detection and diagnosis scheme for satellite formation.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 October 2018

Xiaobin Lian, Jiafu Liu, Chuang Wang, Tiger Yuan and Naigang Cui

The purpose of this paper is to resolve complex nonlinear dynamical problems of the pitching axis of solar sail in body coordinate system compared with inertial coordinate system…

Abstract

Purpose

The purpose of this paper is to resolve complex nonlinear dynamical problems of the pitching axis of solar sail in body coordinate system compared with inertial coordinate system. And saturation condition of controlled torque of vane in the orbit with big eccentricity ration, uncertainty and external disturbance under complex space background are considered.

Design/methodology/approach

The pitch dynamics of the sailcraft in the prescribed elliptic earth orbits is established considering the torques by the control vanes, gravity gradient and offset between the center-of-mass (cm) and center-of-pressure (cp). The maximal torques afforded by the control vanes are numerically determined for the sailcraft at any position with any pitch angle, which will be used as the restriction of the attitude control torques. The finite/infinite time adaptive sliding mode saturation controller and Bang–Bang–Radial Basis Function (RBF) controller are designed for the sailcraft with restricted attitude control torques. The model uncertainty and the input error (the error between real input and ideal control law input) are solved using the RBF network.

Findings

The finite true anomaly adaptive sliding mode saturation controller performed better than the other two controllers by comparing the numerical results in the paper. The control torque saturation, the model uncertainty and the external disturbance were also effectively solved using the infinite and finite time adaptive sliding mode saturation controllers by analyzing the numerical simulations. The stabilization of the pitch motion was accomplished within half orbit period.

Practical implications

The complex accurate dynamics can be approximated using the RBF network. The controllers can be applied to stabilization of spacecraft attitude dynamics with uncertainties in complex space environment.

Originality/value

Advanced control method is used in this paper; saturation of controlled torque of vane is resolved when the orbit with big eccentricity ration is considered and uncertainty and external disturbance under complex space background are settled. Moreover, complex and accurate nonlinear dynamical model of pitching axis of solar sail in body coordinate system compared with inertial coordinate system is provided.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 January 2018

Hongbo Qiu, Xiaobin Fan, Jianqin Feng and Cunxiang Yang

The purpose of this study is to find out the influence degree of harmonic current on the generator operating parameters. In practical operation of the salient-pole synchronous…

Abstract

Purpose

The purpose of this study is to find out the influence degree of harmonic current on the generator operating parameters. In practical operation of the salient-pole synchronous generator, the heat generated by eddy current loss may lead to the breaking of damper winding, and the damper winding is a key component for ensuring the reliable operation of generators. Therefore, it is important to study the distribution characteristics and the influence factors of eddy current loss. Taking a 24-MW bulb tubular turbine generator as a reference, the influence factors that affect the eddy current loss of damper winding are analyzed.

Design/methodology/approach

A two-dimensional (2-D) electromagnetic field model of the generator is established, and the correctness of the model is verified by comparing simulation results and experiment data. The eddy current losses of damper winding in various conditions are calculated by using the finite element method.

Findings

It is identified that the cogging effect, pole shoe magnetic saturation degree, pole arc coefficient and armature reaction are the main factors that affect the eddy current loss of the generator rotor. When the generator is installed with magnetic slot wedges, the distribution characteristic of eddy current loss is obtained through the study of the eddy current density distributions in the damper bars. The variations of eddy current losses with time are gained when the generator has different permeability slot wedges, pole arc coefficients and pole shoe magnetic saturation degrees.

Practical implications

The study of this paper provides a theoretical reference for the design and optimization of bulb tubular turbine generator structure.

Originality/value

The research can help enhance the understanding of eddy current distribution characteristics and influence factors of eddy current loss in bulb tubular turbine generator.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3