Search results

1 – 10 of 411
Article
Publication date: 25 February 2014

Long Thang Mai and Nan Yao Wang

The purpose of this paper is to improve the flexibility and tracking errors of the controllers-based neural networks (NNs) for mobile manipulator robot (MMR) in the presence of…

Abstract

Purpose

The purpose of this paper is to improve the flexibility and tracking errors of the controllers-based neural networks (NNs) for mobile manipulator robot (MMR) in the presence of time-varying uncertainties.

Design/methodology/approach

The conventional backstepping force/motion control is developed by the wavelet fuzzy CMAC neural networks (WFCNNs) (for mobile-manipulator robot). The proposed WFCNNs are applied in the tracking-position-backstepping controller to deal with the uncertain dynamics of the controlled system. In addition, an adaptive robust compensator is proposed to eliminate the inevitable approximation errors, uncertain disturbances, and relax the requirement for prior knowledge of the controlled system. Besides, the position tracking controller, an adaptive robust constraint-force is also considered. The online-learning algorithms of the control parameters (WFCNNs, robust term and constraint-force controller) are obtained by using the Lyapunov stability theorem.

Findings

The design of the proposed method is determined by the Lyapunov theorem such that the stability and robustness of the control-system are guaranteed.

Originality/value

The WFCNNs are more the generalized networks that can overcome the constant out-weight problem of the conventional fuzzy cerebellar model articulation controller (FCMAC), or can converge faster, give smaller approximation errors and size of networks in comparison with FNNs/NNs. In addition, an intelligent-control system by inheriting the advantage of the conventional backstepping-control-system is proposed to achieve the high-position tracking for the MMR control system in the presence of uncertainties variation.

Article
Publication date: 5 March 2018

Xiaobin Lian, Jiafu Liu, Laohu Yuan and Naigang Cui

The purpose of this paper is to present a solution for the uncertain fault with the propulsion subsystem of satellite formation, using the Lur’e differential inclusion linear…

180

Abstract

Purpose

The purpose of this paper is to present a solution for the uncertain fault with the propulsion subsystem of satellite formation, using the Lur’e differential inclusion linear state observers (DILSOs) and fuzzy wavelet neural network (FWNN) to perform fault detection and diagnosis.

Design/methodology/approach

The uncertain fault system cannot be described based on the accurate differential equations. The set-value mapping is introduced into the state equations to solve the problem of uncertainty, but it will cause output uncertainty. The problem can be solved by linearization of Lur’e differential inclusion state observers. The Lur’e DILSOs can be used to detect uncertain fault. The fault isolation and estimation can be performed using the FWNN.

Findings

The mixed approach from fault detection and diagnosis has featured fast and correct to found the uncertain fault. The simulation results to indicate that the methods of design are not only effective but also have the advantages of good approximation effect, fast detection speed, relatively simple structure and prior knowledge and realization of adaptive learning.

Research limitations/implications

The hybrid algorithm can be extensively applied to engineering practice and find uncertain faults of the propulsion subsystem of satellite formation promptly.

Originality/value

This paper provides a fast, effective and simple mixed fault detection and diagnosis scheme for satellite formation.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 October 2017

Haitao Qi, Zilong Liu and Yan Lang

The symmetrical valve is usually used in the hydraulic servo control system to control the asymmetrical cylinder, but this system’s structure involves asymmetry, and so its…

Abstract

Purpose

The symmetrical valve is usually used in the hydraulic servo control system to control the asymmetrical cylinder, but this system’s structure involves asymmetry, and so its dynamic characteristics are asymmetrical, which causes issues in the control system of symmetric response. The purpose of this paper is to achieve the aim of symmetric control.

Design/methodology/approach

In this paper, the authors proposed a method that combined wavelet neural network (WNN) and model reference adaptive control. The reference model determined the dynamic response that the system was expected to achieve, and the WNN adaptive control made the system follow the reference model to achieve the purpose of symmetric control.

Findings

The experimental results show that the method can achieve a more accurate symmetric control and position control compared with the solutions via the classical PID control.

Originality/value

The proposed combination of the WNN and the reference model can effectively compensate for the asymmetry of dynamic response of the asymmetric cylinder in forward and return directions, which can be extended to deal with other classes of applications.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 July 2021

Mehdi Khashei and Fatemeh Chahkoutahi

The purpose of this paper is to propose an extensiveness intelligent hybrid model to short-term load electricity forecast that can simultaneously model the seasonal complicated…

Abstract

Purpose

The purpose of this paper is to propose an extensiveness intelligent hybrid model to short-term load electricity forecast that can simultaneously model the seasonal complicated nonlinear uncertain patterns in the data. For this purpose, a fuzzy seasonal version of the multilayer perceptrons (MLP) is developed.

Design/methodology/approach

In this paper, an extended fuzzy seasonal version of classic MLP is proposed using basic concepts of seasonal modeling and fuzzy logic. The fundamental goal behind the proposed model is to improve the modeling comprehensiveness of traditional MLP in such a way that they can simultaneously model seasonal and fuzzy patterns and structures, in addition to the regular nonseasonal and crisp patterns and structures.

Findings

Eventually, the effectiveness and predictive capability of the proposed model are examined and compared with its components and some other models. Empirical results of the electricity load forecasting indicate that the proposed model can achieve more accurate and also lower risk rather than classic MLP and some other fuzzy/nonfuzzy, seasonal nonseasonal, statistical/intelligent models.

Originality/value

One of the most appropriate modeling tools and widely used techniques for electricity load forecasting is artificial neural networks (ANNs). The popularity of such models comes from their unique advantages such as nonlinearity, universally, generality, self-adaptively and so on. However, despite all benefits of these methods, owing to the specific features of electricity markets and also simultaneously existing different patterns and structures in the electrical data sets, they are insufficient to achieve decided forecasts, lonely. The major weaknesses of ANNs for achieving more accurate, low-risk results are seasonality and uncertainty. In this paper, the ability of the modeling seasonal and uncertain patterns has been added to other unique capabilities of traditional MLP in complex nonlinear patterns modeling.

Article
Publication date: 17 January 2020

Wei Feng, Yuqin Wu and Yexian Fan

The purpose of this paper is to solve the shortage of the existing methods for the prediction of network security situations (NSS). Because the conventional methods for the…

Abstract

Purpose

The purpose of this paper is to solve the shortage of the existing methods for the prediction of network security situations (NSS). Because the conventional methods for the prediction of NSS, such as support vector machine, particle swarm optimization, etc., lack accuracy, robustness and efficiency, in this study, the authors propose a new method for the prediction of NSS based on recurrent neural network (RNN) with gated recurrent unit.

Design/methodology/approach

This method extracts internal and external information features from the original time-series network data for the first time. Then, the extracted features are applied to the deep RNN model for training and validation. After iteration and optimization, the accuracy of predictions of NSS will be obtained by the well-trained model, and the model is robust for the unstable network data.

Findings

Experiments on bench marked data set show that the proposed method obtains more accurate and robust prediction results than conventional models. Although the deep RNN models need more time consumption for training, they guarantee the accuracy and robustness of prediction in return for validation.

Originality/value

In the prediction of NSS time-series data, the proposed internal and external information features are well described the original data, and the employment of deep RNN model will outperform the state-of-the-arts models.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 5 May 2015

Piotr Derugo and Krzysztof Szabat

Various control structures and approaches are in use nowadays. Development of new ideas allows to obtain better quality in control of different industrial processes and hence…

2521

Abstract

Purpose

Various control structures and approaches are in use nowadays. Development of new ideas allows to obtain better quality in control of different industrial processes and hence better quality of products. As it may seem that everything in the classical systems has already been discovered, more and more research centres are tending to incorporate fuzzy or neural control systems. The purpose of this paper is to present an application of the adaptive neuro-fuzzy PID speed controller for a DC drive system with a complex nonlinear mechanical part.

Design/methodology/approach

The model of the driven object including such elements as nonlinear shaft with backlash and friction has been modelled using Matlab-Simulink software. Afterwards experimental verification has been made using a dSPACE control card and experimental system with two DC motors connected with an elastic shaft.

Findings

The presented study shown that the adaptive controller is able to damp the torsional vibration effectively even for the wide range of the system nonlinearities. What is more the design approach for controllers design parameters has been described. Proposed approach is based on requested properties of system. Using proposed tuning scheme no detailed information about the object are needed.

Originality/value

This paper presents for the first time fully an PID adaptive neuro-fuzzy controller. The inputs are the weighted tracking error, error’s derivative and integrated error. What is more the adaptation algorithm consists of a model tracking error its derivative and integer. Also the proposed tuning algorithm in such a form is an original outcome.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 September 2018

Xinzhi Zhu, Shuo Yang, Jingyi Lin, Yi-Ming Wei and Weigang Zhao

Electricity demand forecasting has always been a key issue, and inaccurate forecasts may mislead policymakers. To accurately predict China’s electricity demand up to 2030, this…

Abstract

Purpose

Electricity demand forecasting has always been a key issue, and inaccurate forecasts may mislead policymakers. To accurately predict China’s electricity demand up to 2030, this paper aims to establish a cross-validation-based linear model selection system, which can consider many factors to avoid missing useful information and select the best model according to estimated out-of-sample forecast performances.

Design/methodology/approach

With the nine identified influencing factors of electricity demand, this system first determines the parameters in four alternative fitting procedures, where for each procedure a lot of cross-validation is performed and the most frequently selected value is determined. Then, through comparing the out-of-sample performances of the traditional multiple linear regression and the four selected alternative fitting procedures, the best model is selected in view of forecast accuracy and stability and used for forecasting under four scenarios. Besides the baseline scenario, this paper investigates lower and higher economic growth and higher consumption share.

Findings

The results show the following: China will consume 7,120.49 TWh, 9,080.38 TWh and 11,649.73 TWh of electricity in 2020, 2025 and 2030, respectively; there is hardly any possibility of decoupling between economic development level and electricity demand; and shifting China from an investment-driven economy to a consumption-driven economy is greatly beneficial to save electricity.

Originality/value

Following insights are obtained: reasonable infrastructure construction plans should be made for increasing electricity demand; increasing electricity demand further challenges China’s greenhouse gas reduction target; and the fact of increasing electricity demand should be taken into account for China’s prompting electrification policies.

Details

Journal of Modelling in Management, vol. 13 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 2 October 2019

Chidentree Treesatayapun

The purpose of this paper is to design an online-data driven adaptive control scheme based on fuzzy rules emulated network (FREN) for a class of unknown nonlinear discrete-time…

Abstract

Purpose

The purpose of this paper is to design an online-data driven adaptive control scheme based on fuzzy rules emulated network (FREN) for a class of unknown nonlinear discrete-time systems.

Design/methodology/approach

By using the input-output characteristic curve of controlled plant and the set of IF-THEN rules based on human knowledge inspiration, the adaptive controller is established by an adaptive FREN. The learning algorithm is established with convergence proof of the closed-loop system and controller’s parameters are directly designed by experimental data.

Findings

The convergence of tracking error is verified by the theoretical results and the experimental systems. The experimental systems and comparison results show that the proposed controller and its design procedure based on input-output data can achieve superior performance.

Practical implications

The theoretical aspect and experimental systems with the light-emitting diode (LED) current control and the robotic system prove that the proposed controller can be designed by using only input-output data of the controlled plants when the tracking error can be affirmed the convergence.

Originality/value

The proposed controller has been theoretically developed and used through experimental systems by using only input-output data of the controlled plant. The novel design procedure has been proposed by using the input-output characteristic curve for both positive and negative control directions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2010

Pratesh Jayaswal, S.N. Verma and A.K. Wadhwani

The objective of this paper is to provide a brief review of recent developments in the area of applications of ANN, Fuzzy Logic, and Wavelet Transform in fault diagnosis. The…

1754

Abstract

Purpose

The objective of this paper is to provide a brief review of recent developments in the area of applications of ANN, Fuzzy Logic, and Wavelet Transform in fault diagnosis. The purpose of this work is to provide an approach for maintenance engineers for online fault diagnosis through the development of a machine condition‐monitoring system.

Design/methodology/approach

A detailed review of previous work carried out by several researchers and maintenance engineers in the area of machine‐fault signature‐analysis is performed. A hybrid expert system is developed using ANN, Fuzzy Logic and Wavelet Transform. A Knowledge Base (KB) is created with the help of fuzzy membership function. The triangular membership function is used for the generation of the knowledge base. The fuzzy‐BP approach is used successfully by using LR‐type fuzzy numbers of wavelet‐packet decomposition features.

Findings

The development of a hybrid system, with the use of LR‐type fuzzy numbers, ANN, Wavelets decomposition, and fuzzy logic is found. Results show that this approach can successfully diagnose the bearing condition and that accuracy is good compared with conventionally EBPNN‐based fault diagnosis.

Practical implications

The work presents a laboratory investigation carried out through an experimental set‐up for the study of mechanical faults, mainly related to the rolling element bearings.

Originality/value

The main contribution of the work has been the development of an expert system, which identifies the fault accurately online. The approaches can now be extended to the development of a fault diagnostics system for other mechanical faults such as gear fault, coupling fault, misalignment, looseness, and unbalance, etc.

Details

Journal of Quality in Maintenance Engineering, vol. 16 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 5 October 2021

He-Wei Zhao and Li-bin Yang

This paper aims to discuss the precise altitude and velocity tracking control of a hypersonic vehicle, a global adaptive neural backstepping controller was studied based on a…

Abstract

Purpose

This paper aims to discuss the precise altitude and velocity tracking control of a hypersonic vehicle, a global adaptive neural backstepping controller was studied based on a disturbance observer (DOB).

Design/methodology/approach

The DOB combined with a radial basis function (RBF) neural network (NN) was used to estimate the disturbance terms that are generated by the flexible modes of the hypersonic vehicle system. A global adaptive neural method was introduced to approximate the unknown system dynamics, with robust control terms pulling the system transient states back into the neural approximation domain externally.

Findings

The globally uniformly ultimately bounded for all signals of a closed-loop system can be guaranteed by the proposed control algorithm. Additionally, the command filtered backstepping methods can avoid the explosion of the complexity problem caused by the backstepping design process. In addition, the effectiveness of the proposed controller can be verified by the simulation used in this study.

Research limitations/implications

Normally lateral dynamics issue should be discussed in the process of control system designed, the lateral dynamics are not included in the nonlinear dynamic model of hypersonic vehicle used in this paper, merely the longitudinal flight dynamics are discussed in this paper.

Originality/value

The flexible states in rigid modes are considered as the disturbance of the system, which is estimated by structuring DOB with NN approximations. The compensating tracking error and prediction error are used in the update law of RBF NN weight. The differential explosions complexity derived from the backstepping procedure is dealt with by using command filters.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 411