Search results

1 – 10 of over 3000
Open Access
Article
Publication date: 3 March 2023

Qiang Zhang, Xiaofeng Li, Yundong Ma and Wenquan Li

In this paper, the C80 special coal gondola car was taken as the subject, and the load test data of the car body at the center plate, side bearing and coupler measured on the…

Abstract

Purpose

In this paper, the C80 special coal gondola car was taken as the subject, and the load test data of the car body at the center plate, side bearing and coupler measured on the dedicated line were broken down to generate the random load component spectrums of the car body under five working conditions, namely expansion, bouncing, rolling, torsion and pitching according to the typical motion attitude of the car body.

Design/methodology/approach

On the basis of processing the measured load data, the random load component spectrums were equivalently converted into sinusoidal load component spectrums for bench test based on the principle of pseudo-damage equivalence of load. Relying on the fatigue and vibration test bench of the whole railway wagon, by taking each sinusoidal load component spectrum as the simulation target, the time waveform replication (TWR) iteration technology was adopted to create the drive signal of each loading actuator required for the fatigue test of car body on the bench, and the drive signal was corrected based on the equivalence principle of measured stress fatigue damage to obtain the fatigue test loads of car body under various typical working conditions.

Findings

The fatigue test results on the test bench were substantially close to the measured test results on the line. According to the results, the relative error between the fatigue damage of the car body on the test bench and the measured damage on the line was within the range of −16.03%–27.14%.

Originality/value

The bench test results basically reproduced the fatigue damage of the key parts of the car body on the line.

Details

Railway Sciences, vol. 2 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 15 December 2020

Qiming Chen, Xinyi Fei, Lie Xie, Dongliu Li and Qibing Wang

1. To improve the causality analysis performance, a novel causality detector based on time-delayed convergent cross mapping (TD-CCM) is proposed in this work. 2. Identify the root…

Abstract

Purpose

1. To improve the causality analysis performance, a novel causality detector based on time-delayed convergent cross mapping (TD-CCM) is proposed in this work. 2. Identify the root cause of plant-wide oscillations in process control system.

Design/methodology/approach

A novel causality analysis framework is proposed based on denoising and periodicity-removing TD-CCM (time-delayed convergent cross mapping). We first point out that noise and periodicity have adverse effects on causality detection. Then, the empirical mode decomposition (EMD) and detrended fluctuation analysis (FDA) are combined to achieve denoising. The periodicities are effectively removed through singular spectrum analysis (SSA). Following, the TD-CCM can accurately capture the causalities and locate the root cause by analyzing the filtered signals.

Findings

1. A novel causality detector based on denoising and periodicity-removing time-delayed convergent cross mapping (TD-CCM) is proposed. 2. Simulation studies show that the proposed method is able to improve the causality analysis performance. 3. Industrial case study shows the proposed method can be used to analyze the root cause of plant-wide oscillations in process control system.

Originality/value

1. A novel causality detector based on denoising and periodicity-removing time-delayed convergent cross mapping (TD-CCM) is proposed. 2. The influences of noise and periodicity on causality analysis are investigated. 3. Simulations and industrial case shows that the proposed method can improve the causality analysis performance and can be used to identify the root cause of plant-wide oscillations in process control system.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Content available
Article
Publication date: 2 August 2021

Modupeola Dada, Patricia Popoola and Ntombi Mathe

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential…

1692

Abstract

Purpose

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential alternatives to nickel superalloys for gas turbine applications. Understandings of the laser surface modification techniques of the HEA are discussed whilst future recommendations and remedies to manufacturing challenges via laser are outlined.

Design/methodology/approach

Materials used for high-pressure gas turbine engine applications must be able to withstand severe environmentally induced degradation, mechanical, thermal loads and general extreme conditions caused by hot corrosive gases, high-temperature oxidation and stress. Over the years, Nickel-based superalloys with elevated temperature rupture and creep resistance, excellent lifetime expectancy and solution strengthening L12 and γ´ precipitate used for turbine engine applications. However, the superalloy’s density, low creep strength, poor thermal conductivity, difficulty in machining and low fatigue resistance demands the innovation of new advanced materials.

Findings

HEAs is one of the most frequently investigated advanced materials, attributed to their configurational complexity and properties reported to exceed conventional materials. Thus, owing to their characteristic feature of the high entropy effect, several other materials have emerged to become potential solutions for several functional and structural applications in the aerospace industry. In a previous study, research contributions show that defects are associated with conventional manufacturing processes of HEAs; therefore, this study investigates new advances in the laser-based manufacturing and surface modification techniques of HEA.

Research limitations/implications

The AlxCoCrCuFeNi HEA system, particularly the Al0.5CoCrCuFeNi HEA has been extensively studied, attributed to its mechanical and physical properties exceeding that of pure metals for aerospace turbine engine applications and the advances in the fabrication and surface modification processes of the alloy was outlined to show the latest developments focusing only on laser-based manufacturing processing due to its many advantages.

Originality/value

It is evident that high entropy materials are a potential innovative alternative to conventional superalloys for turbine engine applications via laser additive manufacturing.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 21 August 2023

Yue Zhou, Xiaobei Shen and Yugang Yu

This study examines the relationship between demand forecasting error and retail inventory management in an uncertain supplier yield context. Replenishment is segmented into…

2610

Abstract

Purpose

This study examines the relationship between demand forecasting error and retail inventory management in an uncertain supplier yield context. Replenishment is segmented into off-season and peak-season, with the former characterized by longer lead times and higher supply uncertainty. In contrast, the latter incurs higher acquisition costs but ensures certain supply, with the retailer's purchase volume aligning with the acquired volume. Retailers can replenish in both phases, receiving goods before the sales season. This paper focuses on the impact of the retailer's demand forecasting bias on their sales period profits for both phases.

Design/methodology/approach

This study adopts a data-driven research approach by drawing inspiration from real data provided by a cooperating enterprise to address research problems. Mathematical modeling is employed to solve the problems, and the resulting optimal strategies are tested and validated in real-world scenarios. Furthermore, the applicability of the optimal strategies is enhanced by incorporating numerical simulations under other general distributions.

Findings

The study's findings reveal that a greater disparity between predicted and actual demand distributions can significantly reduce the profits that a retailer-supplier system can earn, with the optimal purchase volume also being affected. Moreover, the paper shows that the mean of the forecasting error has a more substantial impact on system revenue than the variance of the forecasting error. Specifically, the larger the absolute difference between the predicted and actual means, the lower the system revenue. As a result, managers should focus on improving the quality of demand forecasting, especially the accuracy of mean forecasting, when making replenishment decisions.

Practical implications

This study established a two-stage inventory optimization model that simultaneously considers random yield and demand forecast quality, and provides explicit expressions for optimal strategies under two specific demand distributions. Furthermore, the authors focused on how forecast error affects the optimal inventory strategy and obtained interesting properties of the optimal solution. In particular, the property that the optimal procurement quantity no longer changes with increasing forecast error under certain conditions is noteworthy, and has not been previously noted by scholars. Therefore, the study fills a gap in the literature.

Originality/value

This study established a two-stage inventory optimization model that simultaneously considers random yield and demand forecast quality, and provides explicit expressions for optimal strategies under two specific demand distributions. Furthermore, the authors focused on how forecast error affects the optimal inventory strategy and obtained interesting properties of the optimal solution. In particular, the property that the optimal procurement quantity no longer changes with increasing forecast error under certain conditions is noteworthy, and has not been previously noted by scholars. Therefore, the study fills a gap in the literature.

Details

Modern Supply Chain Research and Applications, vol. 5 no. 2
Type: Research Article
ISSN: 2631-3871

Keywords

Open Access
Article
Publication date: 22 April 2024

Girma Asefa Bogale

This study aims to explore the smallholder farmers’ perceptions of climate change and its adaptation options (changing crop variety; improved crop and livestock; soil and water…

Abstract

Purpose

This study aims to explore the smallholder farmers’ perceptions of climate change and its adaptation options (changing crop variety; improved crop and livestock; soil and water conservation [SWC]; and irrigation practices) and drought indices in the Dire Dawa Administration Zone, Eastern Ethiopia.

Design/methodology/approach

A cross-sectional household survey was used. A structured interview schedule for respondent households for key informants and focus group discussions were used. This study used both descriptive statistics and an econometric model. The model was used to compute the determinants of climate adaptation options in the study area. Drought characterization was carried out by DrinC software.

Findings

The results revealed households adapted to selected adaptation options. The model results confirmed that education level, farm size, tropical livestock units (TLUs) and access to agricultural extension services have positive and significant impacts on changing crop variety by 0.0014%, 0.045%, 0.032% and 0.035%, respectively. The likelihood of farmers’ decisions to use adaptation strategies (family size, TLU, agricultural extension service and distance from the market) has positive and significant impacts on SWC. The reconnaissance drought index (RDI6) of ONDJFM and AMJJAS showed extreme and severe drought index values of −2.88 and −1.96, respectively.

Originality/value

This study used a locally adopted climate change adaptation intervention for smallholder farmers, revealing the importance of drought characterization indices both seasonally and annually.

Details

International Journal of Climate Change Strategies and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 25 August 2021

Weiwei Zhu, Jinglin Wu, Ting Fu, Junhua Wang, Jie Zhang and Qiangqiang Shangguan

Efficient traffic incident management is needed to alleviate the negative impact of traffic incidents. Accurate and reliable estimation of traffic incident duration is of great…

1663

Abstract

Purpose

Efficient traffic incident management is needed to alleviate the negative impact of traffic incidents. Accurate and reliable estimation of traffic incident duration is of great importance for traffic incident management. Previous studies have proposed models for traffic incident duration prediction; however, most of these studies focus on the total duration and could not update prediction results in real-time. From a traveler’s perspective, the relevant factor is the residual duration of the impact of the traffic incident. Besides, few (if any) studies have used dynamic traffic flow parameters in the prediction models. This paper aims to propose a framework to fill these gaps.

Design/methodology/approach

This paper proposes a framework based on the multi-layer perception (MLP) and long short-term memory (LSTM) model. The proposed methodology integrates traffic incident-related factors and real-time traffic flow parameters to predict the residual traffic incident duration. To validate the effectiveness of the framework, traffic incident data and traffic flow data from Shanghai Zhonghuan Expressway are used for modeling training and testing.

Findings

Results show that the model with 30-min time window and taking both traffic volume and speed as inputs performed best. The area under the curve values exceed 0.85 and the prediction accuracies exceed 0.75. These indicators demonstrated that the model is appropriate for this study context. The model provides new insights into traffic incident duration prediction.

Research limitations/implications

The incident samples applied by this study might not be enough and the variables are not abundant. The number of injuries and casualties, more detailed description of the incident location and other variables are expected to be used to characterize the traffic incident comprehensively. The framework needs to be further validated through a sufficiently large number of variables and locations.

Practical implications

The framework can help reduce the impacts of incidents on the safety of efficiency of road traffic once implemented in intelligent transport system and traffic management systems in future practical applications.

Originality/value

This study uses two artificial neural network methods, MLP and LSTM, to establish a framework aiming at providing accurate and time-efficient information on traffic incident duration in the future for transportation operators and travelers. This study will contribute to the deployment of emergency management and urban traffic navigation planning.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Content available
Book part
Publication date: 12 October 2018

Abstract

Details

Quality Services and Experiences in Hospitality and Tourism
Type: Book
ISBN: 978-1-78756-384-1

Open Access
Article
Publication date: 6 June 2023

Xiaogang Cao, Hui Wen and Bowei Cao

In this paper, the authors study the production and pricing decisions of a remanufacturing supply chain composed of a supplier, an assembler and a remanufacturer, in which the…

Abstract

Purpose

In this paper, the authors study the production and pricing decisions of a remanufacturing supply chain composed of a supplier, an assembler and a remanufacturer, in which the remanufacturing of components requires patent licensing from the supplier.

Design/methodology/approach

The authors consider three different models with government subsidy for remanufacturing: (1) no government subsidies; (2) the government subsidizes the remanufacturing behavior of the supplier and (3) the government subsidizes the remanufacturing behavior of the remanufacturer and use the Stackelberg game model to solve and analyze the equilibrium wholesale prices of components and the equilibrium outputs of new and remanufactured products under three subsidy modes.

Findings

The results show that the equilibrium wholesale prices of two kinds of components decrease with the unit patent licensing fee and the unit government subsidy, and the equilibrium quantity of the remanufactured products under the three modes is obviously higher than that of the new products.

Originality/value

Finally through numerical simulation, it is found that the equilibrium profits of the supplier, the manufacturer and the supply chain increase monotonously in relation to the unit government subsidy, while the optimal profit of the assembler in relation to the unit government subsidy tends to decrease first and then increase.

Details

Modern Supply Chain Research and Applications, vol. 5 no. 2
Type: Research Article
ISSN: 2631-3871

Keywords

Open Access
Article
Publication date: 31 March 2021

Mei Sha, Theo Notteboom, Tao Zhang, Xin Zhou and Tianbao Qin

This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System…

Abstract

This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System (CTLOS). The simulation model for the CTLOS, a typical type of discrete event dynamic system (DEDS), consists of three sub-models: ship queue, loading-unloading operations and yard-gate operations. The simulation model is empirically applied to phase 1 of the Yangshan Deep Water Port in Shanghai. This study considers different scenarios in terms of container throughput levels, equipment utilization rates, and operational bottlenecks, and presents a sensitivity analysis to evaluate and choose reasonable equipment ratio ranges under different operational conditions.

Details

Journal of International Logistics and Trade, vol. 19 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

Content available
Book part
Publication date: 19 July 2024

Dr. Mfon Akpan

Abstract

Details

Future-Proof Accounting
Type: Book
ISBN: 978-1-83797-820-5

1 – 10 of over 3000