Search results

1 – 2 of 2
Article
Publication date: 25 May 2012

Martin Sevcik, Pavel Hutar, Lubos Nahlik, Ralf Lach, Zdenek Knesl and Wolfgang Grellmann

The purpose of this paper is to study the effect of the material inhomogeneity on crack behavior initiated both axially and circumferentially in or near the butt weld and to…

Abstract

Purpose

The purpose of this paper is to study the effect of the material inhomogeneity on crack behavior initiated both axially and circumferentially in or near the butt weld and to discuss consequences on residual lifetime of the welded structure.

Design/methodology/approach

A three‐dimensional numerical model of pipe weld with smooth and continuous change of material properties has been used to study the fracture behavior of the cracked pipe structure. The stress intensity factor was considered as a parameter controlling the fracture behavior. The semi‐elliptical shape of the crack front was estimated under assumption of constant stress intensity factor along the crack front.

Findings

According to the results obtained in the paper the following conclusions were deduced. First, the most critical location of the crack is in the middle of the inhomogeneous region (weld center) regardless of the crack orientation. The stress intensity factor is substantially higher than in the case of a crack located in the homogenous pipe. Second, with regard to crack shapes, the circumferentially oriented cracks are practically identical regardless to the crack location if compared with the axial cracks. Third, the stress intensity factors of axially‐oriented cracks are approximately twice higher than in the case of circumferential cracks. This implies that the cracks are more likely to grow in an axial direction.

Originality/value

The results described in the paper can be used for estimation of critical crack length or for estimation of the critical applied inner pressure of medium transported in the pipe and are of paramount importance for service life estimations of polymer welded pipes in actual use.

Details

International Journal of Structural Integrity, vol. 3 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 28 August 2007

Gordon Geißler, Michael Kaliske, Michael Nase and Wolfgang Grellmann

The purpose of this paper is to evaluate current simulation capabilities for thin film delamination on the basis of real test data as well as a contribution to its extension in…

1509

Abstract

Purpose

The purpose of this paper is to evaluate current simulation capabilities for thin film delamination on the basis of real test data as well as a contribution to its extension in order to partly substitute experimental investigations.

Design/methodology/approach

The proposed model consists of a formulation that describes the behaviour of the bulk material and an approach that introduces the film's delamination capability. An implicit finite element framework with a cohesive zone implementation is used and described in detail. The numerical results on the basis of the a priori identified material parameters are related to the experimental work. In order to capture the obvious peel speed dependency of these delamination processes, a viscoelastic cohesive formulation is introduced and compared with a pure separation rate dependent cohesive material in the second part of this contribution.

Findings

The performed numerical simulations show a good approximation of the experimental peel process. The extension in order to take time‐dependent effects into account is required for the simulation of such problems. In contrast with the pure rate‐dependent model, the presented consistent formulation of the cohesive part is able to cover the whole range of observed material phenomena.

Research limitations/implications

Owing to the absence of suitable experimental single mode investigations of the sealed layer, the used cohesive material parameters are identified in relation to the pre‐existing experimental results. Furthermore, the resultant peel force has a constant value due to the assumed homogeneous cohesive material and therefore gives only a mean approximation of the experimental values at this stage of the investigation.

Originality/value

The numerical representation of such a thin film delamination process in relation to real experimental results shows the additional capabilities and the usability of the implicit finite element method with a cohesive zone implementation in a clear and illustrative way. The first proposed cohesive extension based on a rheological model shows the capability to cover the full range of time‐dependent interface layer behaviour.

Details

Engineering Computations, vol. 24 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 2 of 2