Search results

1 – 10 of 24
Open Access
Article
Publication date: 22 April 2022

Kamalakshi Dayal and Vandana Bassoo

The performance of Wireless Sensor Networks (WSNs) applications is bounded by the limited resources of battery-enabled Sensor Nodes (SNs), which include energy and computational…

Abstract

Purpose

The performance of Wireless Sensor Networks (WSNs) applications is bounded by the limited resources of battery-enabled Sensor Nodes (SNs), which include energy and computational power; the combination of which existing research seldom focuses on. Although bio-inspired algorithms provide a way to control energy usage by finding optimal routing paths, those which converge slower require even more computational power, which altogether degrades the overall lifetime of SNs.

Design/methodology/approach

Hence, two novel routing protocols are proposed using the Red-Deer Algorithm (RDA) in a WSN scenario, namely Horizontal PEG-RDA Equal Clustering and Horizontal PEG-RDA Unequal Clustering, to address the limited computational power of SNs. Clustering, data aggregation and multi-hop transmission are also integrated to improve energy usage. Unequal clustering is applied in the second protocol to mitigate the hotspot problem in Horizontal PEG-RDA Equal Clustering.

Findings

Comparisons with the well-founded Ant Colony Optimisation (ACO) algorithm reveal that RDA converges faster by 85 and 80% on average when the network size and node density are varied, respectively. Furthermore, 33% fewer packets are lost using the unequal clustering approach which also makes the network resilient to node failures. Improvements in terms of residual energy and overall network lifetime are also observed.

Originality/value

Proposal of a bio-inspired algorithm, namely the RDA to find optimal routing paths in WSN and to enhance convergence rate and execution time against the well-established ACO algorithm. Creation of a novel chain cluster-based routing protocol using RDA, named Horizontal PEG-RDA Equal Clustering. Design of an unequal clustering equivalent of the proposed Horizontal PEG-RDA Equal Clustering protocol to tackle the hotspot problem, which enhances residual energy and overall network lifetime, as well as minimises packet loss.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 26 October 2020

Mohammed S. Al-kahtani, Lutful Karim and Nargis Khan

Designing an efficient routing protocol that opportunistically forwards data to the destination node through nearby sensor nodes or devices is significantly important for an…

Abstract

Designing an efficient routing protocol that opportunistically forwards data to the destination node through nearby sensor nodes or devices is significantly important for an effective incidence response and disaster recovery framework. Existing sensor routing protocols are mostly not effective in such disaster recovery applications as the networks are affected (destroyed or overused) in disasters such as earthquake, flood, Tsunami and wildfire. These protocols require a large number of message transmissions to reestablish the clusters and communications that is not energy efficient and result in packet loss. This paper introduces ODCR - an energy efficient and reliable opportunistic density clustered-based routing protocol for such emergency sensor applications. We perform simulation to measure the performance of ODCR protocol in terms of network energy consumptions, throughput and packet loss ratio. Simulation results demonstrate that the ODCR protocol is much better than the existing TEEN, LEACH and LORA protocols in term of these performance metrics.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 19 May 2022

Akhilesh S Thyagaturu, Giang Nguyen, Bhaskar Prasad Rimal and Martin Reisslein

Cloud computing originated in central data centers that are connected to the backbone of the Internet. The network transport to and from a distant data center incurs long…

1041

Abstract

Purpose

Cloud computing originated in central data centers that are connected to the backbone of the Internet. The network transport to and from a distant data center incurs long latencies that hinder modern low-latency applications. In order to flexibly support the computing demands of users, cloud computing is evolving toward a continuum of cloud computing resources that are distributed between the end users and a distant data center. The purpose of this review paper is to concisely summarize the state-of-the-art in the evolving cloud computing field and to outline research imperatives.

Design/methodology/approach

The authors identify two main dimensions (or axes) of development of cloud computing: the trend toward flexibility of scaling computing resources, which the authors denote as Flex-Cloud, and the trend toward ubiquitous cloud computing, which the authors denote as Ubi-Cloud. Along these two axes of Flex-Cloud and Ubi-Cloud, the authors review the existing research and development and identify pressing open problems.

Findings

The authors find that extensive research and development efforts have addressed some Ubi-Cloud and Flex-Cloud challenges resulting in exciting advances to date. However, a wide array of research challenges remains open, thus providing a fertile field for future research and development.

Originality/value

This review paper is the first to define the concept of the Ubi-Flex-Cloud as the two-dimensional research and design space for cloud computing research and development. The Ubi-Flex-Cloud concept can serve as a foundation and reference framework for planning and positioning future cloud computing research and development efforts.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 22 August 2023

Mahesh Babu Purushothaman and Kasun Moolika Gedara

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and…

1324

Abstract

Purpose

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and embedded cameras) that aids in manual lifting human pose deduction, analysis and training in the construction sector.

Design/methodology/approach

Using a pragmatic approach combined with the literature review, this study discusses the SVBM. The research method includes a literature review followed by a pragmatic approach and lab validation of the acquired data. Adopting the practical approach, the authors of this article developed an SVBM, an AI program to correlate computer vision (recorded and live videos using mobile and embedded cameras).

Findings

Results show that SVBM observes the relevant events without additional attachments to the human body and compares them with the standard axis to identify abnormal postures using mobile and other cameras. Angles of critical nodal points are projected through human pose detection and calculating body part movement angles using a novel software program and mobile application. The SVBM demonstrates its ability to data capture and analysis in real-time and offline using videos recorded earlier and is validated for program coding and results repeatability.

Research limitations/implications

Literature review methodology limitations include not keeping in phase with the most updated field knowledge. This limitation is offset by choosing the range for literature review within the last two decades. This literature review may not have captured all published articles because the restriction of database access and search was based only on English. Also, the authors may have omitted fruitful articles hiding in a less popular journal. These limitations are acknowledged. The critical limitation is that the trust, privacy and psychological issues are not addressed in SVBM, which is recognised. However, the benefits of SVBM naturally offset this limitation to being adopted practically.

Practical implications

The theoretical and practical implications include customised and individualistic prediction and preventing most posture-related hazardous behaviours before a critical injury happens. The theoretical implications include mimicking the human pose and lab-based analysis without attaching sensors that naturally alter the working poses. SVBM would help researchers develop more accurate data and theoretical models close to actuals.

Social implications

By using SVBM, the possibility of early deduction and prevention of musculoskeletal disorders is high; the social implications include the benefits of being a healthier society and health concerned construction sector.

Originality/value

Human pose detection, especially joint angle calculation in a work environment, is crucial to early deduction of muscoloskeletal disorders. Conventional digital technology-based methods to detect pose flaws focus on location information from wearables and laboratory-controlled motion sensors. For the first time, this paper presents novel computer vision (recorded and live videos using mobile and embedded cameras) and digital image-related deep learning methods without attachment to the human body for manual handling pose deduction and analysis of angles, neckline and torso line in an actual construction work environment.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 3 June 2022

XiYue Deng, Xiaoming Li, Zhenzhen Chen, Mengli Zhu, Naixue Xiong and Li Shen

Human group behavior is the driving force behind many complex social and economic phenomena. Few studies have integrated multi-dimensional travel patterns and city interest points…

684

Abstract

Purpose

Human group behavior is the driving force behind many complex social and economic phenomena. Few studies have integrated multi-dimensional travel patterns and city interest points to construct urban security risk indicators. This paper combines traffic data and urban alarm data to analyze the safe travel characteristics of the urban population. The research results are helpful to explore the diversity of human group behavior, grasp the temporal and spatial laws and reveal regional security risks. It provides a reference for optimizing resource deployment and group intelligence analysis in emergency management.

Design/methodology/approach

Based on the dynamics index of group behavior, this paper mines the data of large shared bikes and ride-hailing in a big city of China. We integrate the urban interest points and travel dynamic characteristics, construct the urban traffic safety index based on alarm behavior and further calculate the urban safety index.

Findings

This study found significant differences in the travel power index among ride-sharing users. There is a positive correlation between user shared bike trips and the power-law bimodal phenomenon in the logarithmic coordinate system. It is closely related to the urban public security index.

Originality/value

Based on group-shared dynamic index integrated alarm, we innovatively constructed an urban public safety index and analyzed the correlation of travel alarm behavior. The research results fully reveal the internal mechanism of the group behavior safety index and provide a valuable supplement for the police intelligence analysis.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Open Access
Article
Publication date: 25 March 2024

Shivangi Viral Thakker, Santosh B. Rane and Vaibhav S. Narwane

Digital supply chains require nascent technologies like blockchain and Internet of Things (IoT). There is a need to develop a roadmap for the implementation of these technologies…

Abstract

Purpose

Digital supply chains require nascent technologies like blockchain and Internet of Things (IoT). There is a need to develop a roadmap for the implementation of these technologies, as they require a huge amount of resources and infrastructure. The purpose of this paper is to analyze the challenges of implementing blockchain-IoT integrated architecture in the green supply chain and develop strategies for the same.

Design/methodology/approach

After a thorough literature survey of Scopus-indexed journals and books, 37 barriers were identified, which were then brought down to 15 barriers after confirming with industry and academic experts using the Delphi method. Using the total interpretive structural modeling (TISM) method and cross-impact matrix multiplication applied to classification (MICMAC) analysis, the barriers were modeled, and finally, strategies were formulated using a concept map to handle the barriers in the blockchain-IoT integrated architecture for a green supply chain.

Findings

This paper presents the research on barriers that can be considered for incorporating blockchain and IoT in the green supply chain. It was found from the TISM model that environmental concerns are Level-1 barriers and need to be addressed by developing appropriate technology and allocating funds for the same. An integrated ecosystem with blockchain and IoT is developed.

Research limitations/implications

The focus of this study was on the challenges of blockchain and IoT; hence, it is required to extend the research and find challenges for different industries and also analyze the criteria using other multi-criteria decision-making (MCDM) methods. Further research is required for the integration of blockchain-IoT with supply chain functions.

Practical implications

The transformation of a traditional supply chain into a green supply chain is possible with the integration of technologies. This research work and the strategies developed are useful to managers and practitioners working on technology implementation. Planning resources and addressing key barriers is possible with the concept maps and architecture developed.

Social implications

Green supply chain management (SCM) is gaining importance in industry as well as the academic sector due to government Policies and norms worldwide for reducing emissions and encouraging environment-friendly production systems. Incorporating blockchain and IoT in a green supply chain will further digitize and increase transparency in supply chains.

Originality/value

We have done a categorization of all barriers based on the expert survey by academicians and industry experts from industries in India. The concept map helps in identifying possible solutions for the challenges and initiatives to be taken for the smooth integration of technologies in the green supply chain.

Details

Modern Supply Chain Research and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-3871

Keywords

Open Access
Article
Publication date: 15 December 2023

Francis Olawale Abulude, Domenico Suriano, Samuel Dare Oluwagbayide, Akinyinka Akinnusotu, Ifeoluwa Ayodeji Abulude and Emmanuel Awogbindin

This study aimed to characterize the concentrations of indoor pollutants (such as carbon dioxide (CO2), ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2), as well as…

Abstract

Purpose

This study aimed to characterize the concentrations of indoor pollutants (such as carbon dioxide (CO2), ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2), as well as particulate matter (PM) (PM1, PM2.5 and PM10) in Akure, Nigeria, as well as the relationship between the parameters’ concentrations.

Design/methodology/approach

The evaluation, which lasted four months, used a low-cost air sensor that was positioned two meters above the ground. All sensor procedures were correctly carried out.

Findings

CO2 (430.34 ppm), NO2 (93.31 ppb), O3 (19.94 ppb), SO2 (40.87 ppb), PM1 (29.31 µg/m3), PM2.5 (43.56 µg/m3), PM10 (50.70 µg/m3), temperature (32.4°C) and relative humidity (50.53%) were the average values obtained. The Pearson correlation depicted the relationships between the pollutants and weather factors. With the exception of April, which had significant SO2 (18%) and low PM10 (49%) contributions, NO2 and PM10 were the most common pollutants in all of the months. The mean air quality index (AQI) for NO2 indicated that the AQI was “moderate” (51–100). In contrast to SO2, whose AQI ranged from “moderate” to “very unhealthy,” O3's AQI ranged from “good” (50) to “unhealthy” (151–200). Since PM1, PM2.5 and PM10 made up the majority of PC1’s contribution, both PM2.5 and PM10 were deemed “hazardous.”

Practical implications

The practical implication of indoor air pollution is long-term health effects, including heart disease, lung cancer and respiratory diseases such as emphysema. Indoor air pollution can also cause long-term damage to people’s nerves, brain, kidneys, liver and other organs.

Originality/value

Lack of literature in terms of indoor air quality (IAQ) in Akure, Ondo State. With this work, the information obtained will assist all stakeholders in policy formulation and implementation. Again, the low-cost sensor used is new to this part of the world.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 19 January 2024

Ummi Ibrahim Atah, Mustafa Omar Mohammed, Abideen Adewale Adeyemi and Engku Rabiah Adawiah

The purpose of this paper is to propose a model that will demonstrate how the integration of Salam (exclusive agricultural commodity trade) with Takaful (micro-Takaful – a…

Abstract

Purpose

The purpose of this paper is to propose a model that will demonstrate how the integration of Salam (exclusive agricultural commodity trade) with Takaful (micro-Takaful – a subdivision of Islamic insurance) and value chain can address major challenges facing the agricultural sector in Kano State, Nigeria.

Design/methodology/approach

The study conducted a thorough and critical analysis of relevant literature and existing models of financing agriculture in Nigeria to come up with the proposed model.

Findings

The findings indicate that measures undertaken to address the major challenges fail. In view of this, this study proposed Bay-Salam with Takaful and value chain model to solve a number of challenges such as poor access to financing, poor marketing and pricing, delay, collateral requirement and risk issues in order to avail farmers with easy access to finance and provide effective security to financial institutions.

Research limitations/implications

The paper is limited to using secondary data. Therefore, empirical investigation can be carried out to strengthen the validation of the model.

Practical implications

The study outcome seeks to improve the productivity of the farmers through enhancing their access to finance. This will increase their level of production and provide more employment opportunities. In addition, it will boost financial inclusion, income generation, poverty alleviation, standard of living, food security and overall economic growth and development.

Originality/value

The novelty of this study lies in the integration of classical Bay-Salam with Takaful and value chain and create a unique model structure which the researchers do not come across in any research that presented it in Nigeria.

Details

Islamic Economic Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-1616

Keywords

Open Access
Article
Publication date: 26 April 2024

Xue Xin, Yuepeng Jiao, Yunfeng Zhang, Ming Liang and Zhanyong Yao

This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic…

Abstract

Purpose

This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic response signals.

Design/methodology/approach

The paper conducts time-frequency analysis on signals of pavement dynamic response initially. It also uses two common noise reduction methods, namely, low-pass filtering and wavelet decomposition reconstruction, to evaluate their effectiveness in reducing noise in these signals. Furthermore, as these signals are generated in response to vehicle loading, they contain a substantial amount of data and are prone to environmental interference, potentially resulting in outliers. Hence, it becomes crucial to extract dynamic strain response features (e.g. peaks and peak intervals) in real-time and efficiently.

Findings

The study introduces an improved density-based spatial clustering of applications with Noise (DBSCAN) algorithm for identifying outliers in denoised data. The results demonstrate that low-pass filtering is highly effective in reducing noise in pavement dynamic response signals within specified frequency ranges. The improved DBSCAN algorithm effectively identifies outliers in these signals through testing. Furthermore, the peak detection process, using the enhanced findpeaks function, consistently achieves excellent performance in identifying peak values, even when complex multi-axle heavy-duty truck strain signals are present.

Originality/value

The authors identified a suitable frequency domain range for low-pass filtering in asphalt road dynamic response signals, revealing minimal amplitude loss and effective strain information reflection between road layers. Furthermore, the authors introduced the DBSCAN-based anomaly data detection method and enhancements to the Matlab findpeaks function, enabling the detection of anomalies in road sensor data and automated peak identification.

Details

Smart and Resilient Transportation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 30 April 2021

Ahmad R. Pratama and Firman M. Firmansyah

In this study, the authors seek to understand factors that naturally influence users to adopt two-factor authentication (2FA) without even trying to intervene by investigating…

2362

Abstract

Purpose

In this study, the authors seek to understand factors that naturally influence users to adopt two-factor authentication (2FA) without even trying to intervene by investigating factors within individuals that may influence their decision to adopt 2FA by themselves.

Design/methodology/approach

A total of 1,852 individuals from all 34 provinces in Indonesia participated in this study by filling out online questionnaires. The authors discussed the results from statistical analysis further through the lens of the loss aversion theory.

Findings

The authors found that loss aversion, represented by higher income that translates to greater potential pain caused by losing things to be the most significant demographic factor behind 2FA adoption. On the contrary, those with a low-income background, even if they have some college degree, are more likely to skip 2FA despite their awareness of this technology. The authors also found that the older generation, particularly females, to be among the most vulnerable groups when it comes to authentication-based cyber threats as they are much less likely to adopt 2FA, or even to be aware of its existence in the first place.

Originality/value

Authentication is one of the most important topics in cybersecurity that is related to human-computer interaction. While 2FA increases the security level of authentication methods, it also requires extra efforts that can translate to some level of inconvenience on the user's end. By identifying the associated factors from the user's ends, a necessary intervention can be made so that more users are willing to jump on the 2FA adopters' train.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Access

Only Open Access

Year

Content type

Earlycite article (24)
1 – 10 of 24