Search results

1 – 10 of 785
Article
Publication date: 2 January 2024

Chalermwat Tantasavasdi, Senatanit Arttamart and Natthaumporn Inprom

This paper aims to explore the efficiency of natural ventilation in the bedrooms of typical two-storeyed row houses with newly reconfigured design that incorporate rooftop wind…

Abstract

Purpose

This paper aims to explore the efficiency of natural ventilation in the bedrooms of typical two-storeyed row houses with newly reconfigured design that incorporate rooftop wind catchers and side windows to create cross ventilation.

Design/methodology/approach

A CFD program was used to assess average air velocity coefficient (Cv) in 32 airflow cases. Parameters include location of openings with respect to wind direction, inlet-to-outlet area ratio (IOR) and opening-to-floor area ratio (OFR).

Findings

The results reveal that indoor air velocities in the cases of air entering wind catchers are generally higher than those in the cases of air entering side windows while air velocities at the openings are the opposite. The IOR of 1:2 provides best results in terms of both velocities of the indoor air and velocities at the openings. Increasing the OFR from 20% to 50% generally improves indoor air velocities and airflow rates.

Originality/value

This study proved that the new solution of combining one-sided wind catchers and side windows can effectively solve the problem of ventilation uniquely existing in the conditions of typical row houses by catching prevailing wind from two opposite directions into multiple rooms. The results are given as non-dimensional air velocities, which can be interpreted with any climatic data, and therefore can be applied to row houses in any locations and climatic conditions. The findings can create a new and efficient design of row houses that benefits building industry.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 April 2024

Heping Liu, Jinxin Lu, Fusheng Zhu and Ani Luo

This study proposes a tensegrity-based traction structure with D-bar dual cable units. It is used to connect the airship and the ground to stabilize the airship.

Abstract

Purpose

This study proposes a tensegrity-based traction structure with D-bar dual cable units. It is used to connect the airship and the ground to stabilize the airship.

Design/methodology/approach

The mathematical models and dynamic models of the D-bar dual cable (hereafter referred to as DD cable) unit of the tensegrity-based traction structure are established. Based on the minimum mass method, the mass of the DD cable unit in the critical state (cable member is yielding, or bar member is buckling or yielding) is analyzed. Then, the tensile strength of the DD cable unit and single cable unit under the same condition is compared using the control variate method. Finally, based on ANSYS dynamic simulation, the stability of the two structures under the same external force disturbance was tested.

Findings

Expressions for the minimum mass of the DD cable unit under different failure conditions are solved. Dynamic simulation results show that the capacity of resisting disturbance of the DD cable unit is much better than that of the single cable unit under the same wind speed. So, we find a structure more suitable for the fixed connection of an airship.

Originality/value

This study helps to provide theoretical reference and thinking for the practical application of the traction structure with a D-bar dual cable unit.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 November 2023

Ruizhen Song, Xin Gao, Haonan Nan, Saixing Zeng and Vivian W.Y. Tam

This research aims to propose a model for the complex decision-making involved in the ecological restoration of mega-infrastructure (e.g. railway engineering). This model is based…

Abstract

Purpose

This research aims to propose a model for the complex decision-making involved in the ecological restoration of mega-infrastructure (e.g. railway engineering). This model is based on multi-source heterogeneous data and will enable stakeholders to solve practical problems in decision-making processes and prevent delayed responses to the demand for ecological restoration.

Design/methodology/approach

Based on the principle of complexity degradation, this research collects and brings together multi-source heterogeneous data, including meteorological station data, remote sensing image data, railway engineering ecological risk text data and ecological restoration text data. Further, this research establishes an ecological restoration plan library to form input feature vectors. Random forest is used for classification decisions. The ecological restoration technologies and restoration plant species suitable for different regions are generated.

Findings

This research can effectively assist managers of mega-infrastructure projects in making ecological restoration decisions. The accuracy of the model reaches 0.83. Based on the natural environment and construction disturbances in different regions, this model can determine suitable types of trees, shrubs and herbs for planting, as well as the corresponding ecological restoration technologies needed.

Practical implications

Managers should pay attention to the multiple types of data generated in different stages of megaproject and identify the internal relationships between these multi-source heterogeneous data, which provides a decision-making basis for complex management decisions. The coupling between ecological restoration technologies and restoration plant species is also an important factor in improving the efficiency of ecological compensation.

Originality/value

Unlike previous studies, which have selected a typical section of a railway for specialized analysis, the complex decision-making model for ecological restoration proposed in this research has wider geographical applicability and can better meet the diverse ecological restoration needs of railway projects that span large regions.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 22 June 2022

Serena Summa, Alex Mircoli, Domenico Potena, Giulia Ulpiani, Claudia Diamantini and Costanzo Di Perna

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with…

1113

Abstract

Purpose

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with high degree of resilience against climate change. In this context, a promising construction technique is represented by ventilated façades (VFs). This paper aims to propose three different VFs and the authors define a novel machine learning-based approach to evaluate and predict their energy performance under different boundary conditions, without the need for expensive on-site experimentations

Design/methodology/approach

The approach is based on the use of machine learning algorithms for the evaluation of different VF configurations and allows for the prediction of the temperatures in the cavities and of the heat fluxes. The authors trained different regression algorithms and obtained low prediction errors, in particular for temperatures. The authors used such models to simulate the thermo-physical behavior of the VFs and determined the most energy-efficient design variant.

Findings

The authors found that regression trees allow for an accurate simulation of the thermal behavior of VFs. The authors also studied feature weights to determine the most relevant thermo-physical parameters. Finally, the authors determined the best design variant and the optimal air velocity in the cavity.

Originality/value

This study is unique in four main aspects: the thermo-dynamic analysis is performed under different thermal masses, positions of the cavity and geometries; the VFs are mated with a controlled ventilation system, used to parameterize the thermodynamic behavior under stepwise variations of the air inflow; temperatures and heat fluxes are predicted through machine learning models; the best configuration is determined through simulations, with no onerous in situ experimentations needed.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 30 January 2024

Rebecca Restle, Marcelo Cajias and Anna Knoppik

The purpose of this paper is to explore the significance impact of air quality as a contributing factor on residential property rents by applying geo-informatics to economic…

28

Abstract

Purpose

The purpose of this paper is to explore the significance impact of air quality as a contributing factor on residential property rents by applying geo-informatics to economic issues. Since air pollution poses a severe health threat, city residents should have a right to know about the (invisible) hazards they are exposed to.

Design/methodology/approach

Within spatial-temporal modeling of air pollutants in Berlin, Germany, three interpolation techniques are tested. The most suitable one is selected to create seasonal maps for 2018 and 2021 with pollution concentrations for particulate matter values and nitrogen dioxide for each 1,000 m2 cell within the administrative boundaries. Based on the evaluated pollution particulate matter values, which are used as additional variables for semi-parametric regressions the impact of the air quality on rents is estimated.

Findings

The findings reveal a compelling association between air quality and the economic aspect of the residential real estate market, with noteworthy implications for both tenants and property investors. The relationship between air pollution variables and rents is statistically significant. However, there is only a “willingness-to- pay” for low particulate matter values, but not for nitrogen dioxide concentrations. With good air quality, residents in Berlin are willing to pay a higher rent (3%).

Practical implications

These results suggest that a “marginal willingness-to-pay” occurs in a German city. The research underscores the multifaceted impact of air quality on the residential rental market in Berlin. The evidence supports the notion that a cleaner environment not only benefits human health and the planet but also contributes significantly to the economic bottom line of property investors.

Originality/value

The paper has a unique data engineering approach. It collects spatiotemporal data from network of state-certified measuring sites to create an index of air pollution. This spatial information is merged with residential listings. Afterward non-linear regression models are estimated.

Details

Journal of Property Investment & Finance, vol. 42 no. 2
Type: Research Article
ISSN: 1463-578X

Keywords

Open Access
Article
Publication date: 29 September 2022

Mónica Moreno, Rocío Ortiz and Pilar Ortiz

Heavy rainfall is one of the main causes of the degradation of historic rammed Earth architecture. For this reason, ensuring the conservation thereof entails understanding the…

1365

Abstract

Purpose

Heavy rainfall is one of the main causes of the degradation of historic rammed Earth architecture. For this reason, ensuring the conservation thereof entails understanding the factors involved in these risk situations. The purpose of this study is to research three past events in which rainfall caused damage and collapse to historic rammed Earth fortifications in Andalusia in order to analyse whether it is possible to prevent similar situations from occurring in the future.

Design/methodology/approach

The three case studies analysed are located in the south of Spain and occurred between 2017 and 2021. The hazard presented by rainfall within this context has been obtained from Art-Risk 3.0 (Registration No. 201999906530090). The vulnerability of the structures has been assessed with the Art-Risk 1 model. To characterise the strength, duration, and intensity of precipitation events, a workflow for the statistical use of GPM and GSMaP satellite resources has been designed, validated, and tested. The strength of the winds has been evaluated from data from ground-based weather stations.

Findings

GSMaP precipitation data is very similar to data from ground-based weather stations. Regarding the three risk events analysed, although they occurred in areas with a torrential rainfall hazard, the damage was caused by non-intense rainfall that did not exceed 5 mm/hour. The continuation of the rainfall for several days and the poor state of conservation of the walls seem to be the factors that triggered the collapses that fundamentally affected the restoration mortars.

Originality/value

A workflow applied to vulnerability and hazard analysis is presented, which validates the large-scale use of satellite images for past and present monitoring of heritage structure risk situations due to rain.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Book part
Publication date: 18 January 2024

Yashwantraj Seechurn

The complexity of atmospheric corrosion, further compounded by the effects of climate change, makes existing models inappropriate for corrosion prediction. The commonly used…

Abstract

The complexity of atmospheric corrosion, further compounded by the effects of climate change, makes existing models inappropriate for corrosion prediction. The commonly used kinetic model and dose-response functions are restricted in their capacity to represent the non-linear behaviour of corrosion phenomena. The application of artificial intelligence (AI)-driven machine learning algorithms to corrosion data can better represent the corrosion mechanism by considering the dynamic behaviour due to changing climatic conditions. Effective use of materials, coating systems and maintenance strategies can then be made with such a corrosivity model. Accurate corrosion prediction will help to improve climate change resilience of the social, economic and energy infrastructure in line with the UN Sustainable Development Goals (SDGs) 7 (Affordable and Clean Energy), 9 (Industry, Innovation and Infrastructure) and 13 (Climate Action). This chapter discusses atmospheric corrosion prediction in relation to the SDGs and the influence of AI in overcoming the challenges.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 24 April 2024

Ali M. AlQahtani

Jubail Industrial City is one of the largest industrial centers in the Middle East, offering potential opportunities for renewable energy generation. This research paper presents…

Abstract

Purpose

Jubail Industrial City is one of the largest industrial centers in the Middle East, offering potential opportunities for renewable energy generation. This research paper presents a comprehensive analysis of the wind resources in Jubail Industrial City and proposes the design of a smart grid-connected wind farm for this strategic location.

Design/methodology/approach

The study used wind data collected at three different heights above ground level – 10, 50 and 90 m – over four years from 2017 to 2020. Key parameters, such as average wind speeds (WS), predominant wind direction, Weibull shape, scale parameters and wind power density (WPD), were analyzed. The study used Windographer, an exclusive software program designed to evaluate wind resources.

Findings

The average WS at the respective heights were 3.07, 4.29 and 4.58 m/s. The predominant wind direction was from the north-west. The Weibull shape parameter (k) at the three heights was 1.77, 2.15 and 2.01, while the scale parameter (c) was 3.36, 4.88 and 5.33 m/s. The WPD values at different heights were 17.9, 48.8 and 59.3 W/m2, respectively.

Originality/value

The findings suggest that Jubail Industrial City possesses favorable wind resources for wind energy generation. The proposed smart grid-connected wind farm design demonstrates the feasibility of harnessing wind power in the region, contributing to sustainable energy production and economic benefits.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 August 2023

Zhiqi Liu, Tanghong Liu, Hongrui Gao, Houyu Gu, Yutao Xia and Bin Xu

Constructing porous wind barriers is one of the most effective approaches to increase the running safety of trains on viaducts in crosswinds. This paper aims to further improve…

Abstract

Purpose

Constructing porous wind barriers is one of the most effective approaches to increase the running safety of trains on viaducts in crosswinds. This paper aims to further improve the wind-sheltering performance of the porous wind barriers.

Design/methodology/approach

Improved delayed detached eddy simulations based on the k-ω turbulence model were carried out, and the results were validated with wind tunnel tests. The effects of the hole diameter on the flow characteristics and wind-sheltering performance were studied by comparing the wind barriers with the porosity of 21.6% and the hole diameters of 60 mm–360 mm. The flow characteristics above the windward and leeward tracks were analyzed, and the wind-sheltering performance of the wind barriers was assessed using the wind speed reduction coefficients.

Findings

The hole diameters affected the jet behind the wind barriers and the recirculation region above the tracks. Below the top of the wind barriers, the time-averaged velocity first decreased and then increased with the increase in the hole diameter. The wind barrier with the hole diameter of 120 mm had the best wind-sheltering performance for the windward track, but such barrier might lead to overprotection on the leeward track. The wind-sheltering performance of the wind barriers with the hole diameters of 240 mm and 360 mm was significantly degraded, especially above the windward track.

Originality/value

The effects of the hole diameters on the wake and wind-sheltering performance of the wind barriers were studied, by which the theoretical basis is provided for a better design of the porous wind barrier.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 March 2024

Mouna Zerzeri, Intissar Moussa and Adel Khedher

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Abstract

Purpose

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Design/methodology/approach

The 3PIM is driven by a soft voltage source inverter (VSI) controlled by a specific space vector modulation. By adjusting the appropriate vector sequence selection, the desired VSI output voltage allows a real wind turbine speed emulation in the laboratory, taking into account the wind profile, static and dynamic behaviors and parametric variations for theoretical and then experimental analysis. A Mexican hat profile and a sinusoidal profile are therefore used as the wind speed system input to highlight the electrical, mechanical and electromagnetic system response.

Findings

The simulation results, based on relative error data, show that the proposed reactive power control method effectively estimates the flux and the rotor time constant, thus ensuring an accurate trajectory tracking of the wind speed for the wind emulation application.

Originality/value

The proposed architecture achieves its results through the use of mathematical theory and WTE topology combine with an online adaptive estimator and Lyapunov stability adaptation control methods. These approaches are particularly relevant for low-cost or low-power alternative current (AC) motor drives in the field of renewable energy emulation. It has the advantage of eliminating the need for expensive and unreliable position transducers, thereby increasing the emulator drive life. A comparative analysis was also carried out to highlight the online adaptive estimator fast response time and accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 785