Search results

1 – 10 of over 7000
Article
Publication date: 2 December 2019

S.W. Soh and Z.W. Zhong

Given the ever-growing air travel industry, there is an increasing strain on the systems that provide safe flights. Different methods have to be adopted to help to cope with the…

Abstract

Purpose

Given the ever-growing air travel industry, there is an increasing strain on the systems that provide safe flights. Different methods have to be adopted to help to cope with the increasing demand, especially in Southeast Asia. The purpose of this study is to sectorise one existing airspace to better manage sector workloads.

Design/methodology/approach

Cambodia’s airspace was chosen for this study because it had only one sector and it was quickly approaching its limit. In this paper, after characterising the airspace, it was first bi-partitioned using the spectral clustering algorithm. The weights of the resulting subgraphs were then balanced through a weight-balancing algorithm. Also, a post-processing algorithm established the sector boundary to be drawn. The method was first carried out on one test airspace. Following the successful sectorisation of the test airspace, the actual Cambodian airspace was sectorised. The resulting two new sectors were then calculated to be able to last for approximately five years before they would reach their capacity. Hence, a further sectorisation was carried out. This resulted in four sectors, which were projected to last more than 10 years.

Findings

The method produced satisfactory results. The methodology presented is proven to be effective in achieving the sectorisation. The workloads of the new sectors obtained are balanced, and the sector boundaries are at least 15 km away from the air routes and nodes. The methodology is also general and can be applied to different scenarios. This means that applications to other airspace in the region are possible, which can further help to increase the safety, efficiency and capacity of the air traffic movement in this region.

Originality/value

This paper presents one of the approaches for airspace sector designs. The problems are clearly presented with references. The authors discuss the advantages and disadvantages of subdividing airspace and the need to sectorise Cambodia’s airspace, and present a method to solve the sectorisation problem. It is very precious to apply methodologies and algorithms to real cases. The presented method offers significant advantages such as the ease of implementation and efficiency. The problems can easily be solved using standard linear algebra algorithms. Instead of looking at the airspace as a whole, and generating new sector boundaries, our algorithm uses current sector boundaries and bisects them. Moreover, only sectors that require sectorisation would be affected. This algorithm has the advantage of maintaining the current sector boundaries to prevent radical changes to daily operations. The Voronoi diagram used in this work does not generate polygonal cells. It instead calculates the area based on pixels. The advantage of doing this is that it offers higher flexibility. Also, the sector boundary is generated based on straight lines calculated by joining the midpoints of links. This is simple and ensures that sections of the sector boundary are made up of straight, distinct lines. The authors also discuss the problems of the method and presented solutions to them.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 July 2020

Abdessamed Mogtit, Noureddine Aribi, Yahia Lebbah and Mohand Lagha

Airspace sectorization is an important task, which has a significant impact in the everyday work of air control services. Especially in recent years, because of the constant…

131

Abstract

Purpose

Airspace sectorization is an important task, which has a significant impact in the everyday work of air control services. Especially in recent years, because of the constant increase in air traffic, existing airspace sectorization techniques have difficulties to tackle the large air traffic volumes, creating imbalanced sectors and uneven workload distribution among sectors. The purpose of this paper is to propose a new approach to find optimal airspace sectorization balancing the traffic controller workload between sectors, subject to airspace requirements.

Design/methodology/approach

A constraint programming (CP) model called equitable airspace sectorization problem (EQASP) relies on ordered weighted averaging (OWA) multiagent optimization and the parallel portfolio architecture has been developed, which integrates the equity into an existing CP approach (Trandac et al., 2005). The EQASP was evaluated and compared with the method of Trandac et al. (2005), according to the quality of workload balancing between sectors and the resolution performance. The comparison was achieved using real air traffic low-altitude network data sets of French airspace for five flight information regions for 24 h a day and the Algerian airspace for three various periods (off peak hours, peak hours and 24 h).

Findings

It has been demonstrated that the proposed EQASP model, which is based on OWA multicriteria optimization method, significantly improved both the solving performance and the workload equity between sectors, while offering strong theoretical properties of the balancing requirement. Interestingly, when solving hard instances, our parallel sectorization tool can provide, at any time, a workable solution, which satisfies all geometric constraints of sectorization.

Practical implications

This study can be used to design well-balanced air sectors in terms of workload between control units in the strategic phase. To fulfil the airspace users’ constraints, one can refer to this study to assess the capacity of each air sector (especially the overloaded sectors) and then adjust the sector’s shape to respond to the dynamic changes in traffic patterns.

Social implications

This theoretical and practical approach enables the development and support of the definition of the “Air traffic management (ATM) Concept Target” through improvements in human factors specifically (balancing workload across sectors), which contributes to raising the level of capacity, safety and efficiency (SESAR Vision of ATM 2035).

Originality/value

In their approach, the authors proposed an OWA-based multiagent optimization model, ensuring the search for the best equitable solution, without requiring user-defined balancing constraints, which enforce each sector to have a workload between two user-defined bounds (Wmin, Wmax).

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 June 2021

Sixian Chan, Jian Tao, Xiaolong Zhou, Binghui Wu, Hongqiang Wang and Shengyong Chen

Visual tracking technology enables industrial robots interacting with human beings intelligently. However, due to the complexity of the tracking problem, the accuracy of visual…

Abstract

Purpose

Visual tracking technology enables industrial robots interacting with human beings intelligently. However, due to the complexity of the tracking problem, the accuracy of visual target tracking still has great space for improvement. This paper aims to propose an accurate visual target tracking method based on standard hedging and feature fusion.

Design/methodology/approach

For this study, the authors first learn the discriminative information between targets and similar objects in the histogram of oriented gradients by feature optimization method, and then use standard hedging algorithms to dynamically balance the weights between different feature optimization components. Moreover, they penalize the filter coefficients by incorporating spatial regularization coefficient and extend the Kernelized Correlation Filter for robust tracking. Finally, a model update mechanism to improve the effectiveness of the tracking is proposed.

Findings

Extensive experimental results demonstrate the superior performance of the proposed method comparing to the state-of-the-art tracking methods.

Originality/value

Improvements to existing visual target tracking algorithms are achieved through feature fusion and standard hedging algorithms to further improve the tracking accuracy of robots on targets in reality.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 April 2011

Dimitris I. Petropoulos and Andreas C. Nearchou

The purpose of this paper is to apply particle swarm optimization (PSO) a known combinatorial optimization algorithm to multi‐objective (MO) balancing of large assembly lines.

Abstract

Purpose

The purpose of this paper is to apply particle swarm optimization (PSO) a known combinatorial optimization algorithm to multi‐objective (MO) balancing of large assembly lines.

Design/methodology/approach

A novel approach based on PSO is developed to tackle the simple assembly line balancing problem (SALBP), a well‐known NP‐hard production and operations management problem. Line balancing is considered for two‐criteria problems utilizing cycle time and workload smoothing as performance criteria, as well as for three‐criteria problems involving the balance delay time of the line together with cycle time and workload smoothing. Emphasis is on seeking a set of diverse Pareto optimal solutions for the bi‐criteria SALBP.

Findings

Experiments carried out on multiple test problems taken from the open literature are reported and discussed. Comparisons between the proposed PSO algorithm and two existing MO population heuristics show a quite promising higher performance for the proposed approach.

Originality/value

Artificial particles (potential solutions “flown” by PSO though hyperspace) are encoded to actual ALB solutions via a novel representation mechanism. A new scheme for generating and maintaining diverse Pareto ALB solutions is proposed. For the case of the two‐criteria ALBPs, the individual objectives are summed to a weighted combination with the weight coefficients being dynamically adapted using a novel weighted aggregation method. This weighted method can be applied on any bi‐criteria optimization problem.

Details

Assembly Automation, vol. 31 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 April 2019

Prem Singh and Himanshu Chaudhary

This paper aims to present the optimum two-plane discrete balancing procedure for rigid rotor. The discrete two-plane balancing in which rotor is balanced to minimize the residual…

Abstract

Purpose

This paper aims to present the optimum two-plane discrete balancing procedure for rigid rotor. The discrete two-plane balancing in which rotor is balanced to minimize the residual effects or the reactions on the bearing supports using discrete parameters such as masses and their angular positions on two balancing planes.

Design/methodology/approach

Therefore as a multi-objective optimization problem is formulated by considering reaction forces on the bearing supports as a multi objective functions and discrete parameters on each balancing plane as design variables. These multi-objective functions are converted into a single-objective function using appropriate weighting factors. Further, this optimization problem is solved using discrete optimization algorithm, based on Jaya algorithm.

Findings

The performance of the discrete Jaya algorithm is compared to genetic algorithm (GA) algorithm. It is found that Jaya algorithm is computationally more efficient than GA algorithm. A number of masses per plane are used to balance the rotor. A comparison of reaction forces using number of masses per plane is investigated.

Originality/value

The effectiveness of the proposed methodology is tested by the balancing problem of rotor available in the literature. The influence of a number of balance masses on bearing forces and objective function are discussed. ADAMS software is used for validation of a developed balancing approach.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 July 2022

Michel Toulouse, H.K. Dai and Truong Giang Le

Sharding of blockchains consists of partitioning a blockchain network into several sub-networks called “shards,” each shard processing and storing disjoint sets of transactions in…

Abstract

Purpose

Sharding of blockchains consists of partitioning a blockchain network into several sub-networks called “shards,” each shard processing and storing disjoint sets of transactions in parallel. Sharding has recently been applied to public blockchains to improve scalability through parallelism. The throughput of sharded blockchain is optimized when the workload among the shards is approximately the same. The purpose of this paper is to investigate the problem of balancing workload of account-based blockchains such as Ethereum.

Design/methodology/approach

Two known consensus-based distributed load-balancing algorithms have been adapted to sharded blockchains. These algorithms migrate accounts across shards to balance transaction processing times. Two methods to predict transaction processing times are proposed.

Findings

The authors identify some challenging aspects for solving the load-balancing problem in sharded blockchains. Experiments conducted with Ethereum transactions show that the two load-balancing algorithms are challenged by accounts often created to process a single transaction to optimize anonymity, while existing accounts sparsely generate transactions.

Originality/value

Tests in this work have been conducted on transactions originating from a blockchain platform rather than using artificially generated data distributions. They show the specificity of the load-balancing problem for sharded blockchains, which were hidden in artificial data sets.

Details

International Journal of Web Information Systems, vol. 18 no. 2/3
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 4 February 2020

Prem Singh and Himanshu Chaudhary

This paper aims to propose a dynamically balanced mechanism for cleaning unit used in agricultural thresher machine using a dynamically equivalent system of point masses.

Abstract

Purpose

This paper aims to propose a dynamically balanced mechanism for cleaning unit used in agricultural thresher machine using a dynamically equivalent system of point masses.

Design/methodology/approach

The cleaning unit works on crank-rocker Grashof mechanism. This mechanism can be balanced by optimizing the inertial properties of each link. These properties are defined by the dynamic equivalent system of point masses. Parameters of these point masses define the shaking forces and moments. Hence, the multi-objective optimization problem with minimization of shaking forces and shaking moments is formulated by considering the point mass parameters as the design variables. The formulated optimization problem is solved using a posteriori approach-based algorithm i.e. the non-dominated sorting Jaya algorithm (NSJAYA) and a priori approach-based algorithms i.e. Jaya algorithm and genetic algorithm (GA) under suitable design constraints.

Findings

The mass, center of mass and inertias of each link are calculated using optimum design variables. These optimum parameters improve the dynamic performance of the cleaning unit. The optimal Pareto set for the balancing problem is measured and outlined in this paper. The designer can choose any solution from the set and balance any real planar mechanism.

Originality/value

The efficiency of the proposed approach is tested through the existing cleaning mechanism of the thresher machine. It is found that the NSJAYA is computationally more efficient than the GA and Jaya algorithm. ADAMS software is used for the simulation of the mechanism.

Details

Engineering Computations, vol. 37 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 June 2022

Lokesh Singh, Rekh Ram Janghel and Satya Prakash Sahu

Automated skin lesion analysis plays a vital role in early detection. Having relatively small-sized imbalanced skin lesion datasets impedes learning and dominates research in…

Abstract

Purpose

Automated skin lesion analysis plays a vital role in early detection. Having relatively small-sized imbalanced skin lesion datasets impedes learning and dominates research in automated skin lesion analysis. The unavailability of adequate data poses difficulty in developing classification methods due to the skewed class distribution.

Design/methodology/approach

Boosting-based transfer learning (TL) paradigms like Transfer AdaBoost algorithm can compensate for such a lack of samples by taking advantage of auxiliary data. However, in such methods, beneficial source instances representing the target have a fast and stochastic weight convergence, which results in “weight-drift” that negates transfer. In this paper, a framework is designed utilizing the “Rare-Transfer” (RT), a boosting-based TL algorithm, that prevents “weight-drift” and simultaneously addresses absolute-rarity in skin lesion datasets. RT prevents the weights of source samples from quick convergence. It addresses absolute-rarity using an instance transfer approach incorporating the best-fit set of auxiliary examples, which improves balanced error minimization. It compensates for class unbalance and scarcity of training samples in absolute-rarity simultaneously for inducing balanced error optimization.

Findings

Promising results are obtained utilizing the RT compared with state-of-the-art techniques on absolute-rare skin lesion datasets with an accuracy of 92.5%. Wilcoxon signed-rank test examines significant differences amid the proposed RT algorithm and conventional algorithms used in the experiment.

Originality/value

Experimentation is performed on absolute-rare four skin lesion datasets, and the effectiveness of RT is assessed based on accuracy, sensitivity, specificity and area under curve. The performance is compared with an existing ensemble and boosting-based TL methods.

Details

Data Technologies and Applications, vol. 57 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 1 June 2021

Paraskevi Th. Zacharia and Andreas C. Nearchou

This paper considers the assembly line worker assignment and balancing problem of type-2 (ALWABP-2) with fuzzy task times. This problem is an extension of the (simple) SALBP-2 in…

Abstract

Purpose

This paper considers the assembly line worker assignment and balancing problem of type-2 (ALWABP-2) with fuzzy task times. This problem is an extension of the (simple) SALBP-2 in which task times are worker-dependent and concurrently uncertain. Two criteria are simultaneously considered for minimization, namely, fuzzy cycle time and fuzzy smoothness index.

Design/methodology/approach

First, we show how fuzzy concepts can be used for managing uncertain task times. Then, we present a multiobjective genetic algorithm (MOGA) to solve the problem. MOGA is devoted to the search for Pareto-optimal solutions. For facilitating effective trade-off decision-making, two different MO approaches are implemented and tested within MOGA: a weighted-sum based approach and a Pareto-based approach.

Findings

Experiments over a set of fuzzified test problems show the effect of these approaches on the performance of MOGA while verifying its efficiency in terms of both solution and time quality.

Originality/value

To the author’s knowledge, no previous published work in the literature has studied the biobjective assembly line worker assignment and balancing problem of type-2 (ALWABP-2) with fuzzy task times.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 December 2023

Zihan Dang and Naiming Xie

Assembly line is a common production form and has been effectively used in many industries, but the imprecise processing time of each process makes production line balancing and…

Abstract

Purpose

Assembly line is a common production form and has been effectively used in many industries, but the imprecise processing time of each process makes production line balancing and capacity forecasting the most troublesome problems for production managers. In this paper, uncertain man-hours are represented as interval grey numbers, and the optimization problem of production line balance in the case of interval grey man-hours is studied to better evaluate the production line capacity.

Design/methodology/approach

First, this paper constructs the basic model of assembly line balance optimization for the single-product scenario, and on this basis constructs an assembly line balance optimization model under the multi-product scenario with the objective function of maximizing the weighted greyscale production line balance rate, second, this paper designs a simulated annealing algorithm to solve problem. A neighborhood search strategy is proposed, based on assembly line balance optimization, an assembly line capacity evaluation method with interval grey man-hour characteristics is designed.

Findings

This paper provides a production line balance optimization scheme with uncertain processing time for multi-product scenarios and designs a capacity evaluation method to provide managers with scientific management strategies so that decision-makers can scientifically solve the problems that the company's design production line is quite different from the actual production situation.

Originality/value

There are few literary studies on combining interval grey number with assembly line balance optimization. Therefore, this paper makes an important contribution in this regard.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

1 – 10 of over 7000