Search results

1 – 10 of 34
Article
Publication date: 6 July 2023

Omprakash Ramalingam Rethnam and Albert Thomas

The building sector contributes one-third of the energy-related carbon dioxide globally. Therefore, framing appropriate energy-related policies for the next decades becomes…

Abstract

Purpose

The building sector contributes one-third of the energy-related carbon dioxide globally. Therefore, framing appropriate energy-related policies for the next decades becomes essential in this scenario to realize the global net-zero goals. The purpose of the proposed study is to evaluate the impact of the widespread adoption of such guidelines in a building community in the context of mixed-mode buildings.

Design/methodology/approach

This study decentralizes the theme of improving the energy efficiency of the national building stock in parcels by proposing a community-based hybrid bottom-up modelling approach using urban building energy modelling (UBEM) techniques to analyze the effectiveness of the community-wide implementation of energy conservation guidelines.

Findings

In this study, the UBEM is developed and validated for the 14-building residential community in Mumbai, India, adopting the framework. Employing Energy Conservation Building Code (ECBC) compliance on the UBEM shows an energy use reduction potential of up to 15%. The results also reveal that ECBC compliance is more advantageous considering the effects of climate change.

Originality/value

In developing countries where the availability of existing building stock information is minimal, the proposed study formulates a holistic framework for developing a detailed UBEM for the residential building stock from scratch. A unique method of assessing the actual cooling load of the developed UBEM is presented. A thorough sensitivity analysis approach to investigate the effect of cooling space fraction on the energy consumption of the building stock is presented, which would assist in choosing the appropriate retrofit strategies. The proposed study's outcomes can significantly transform the formulation and validation of appropriate energy policies.

Details

Smart and Sustainable Built Environment, vol. 13 no. 5
Type: Research Article
ISSN: 2046-6099

Keywords

Book part
Publication date: 4 October 2024

Matt Elliott Bell

Divers were contracted to carry out a detailed baseline survey which will form the Environmental Impact Assessment. This report presents information about the biodiversity of…

Abstract

Divers were contracted to carry out a detailed baseline survey which will form the Environmental Impact Assessment. This report presents information about the biodiversity of Cawsand Bay and the impact of installing a subsea tidal energy module. Subsequently, this addresses some of the SDG14 targets: 14.5, conserve coastal and marine areas; 14.7, increase the economic benefits from the sustainable use of marine resources to small island developing states and less developed countries; and 14.8, increase scientific knowledge, research and technology for ocean health. Contracted from November to December 2021 over a four-week period, five SCUBA divers conducted baseline transects over regular intervals of five meters at Cawsand Bay in each cardinal direction. Water and sediment samples were analysed to better understand the habitat and benthos at Cawsand Bay. Sediment samples established the biotope by identifying the benthos: sublittoral seagrass beds (SS.SMp.SSgr.Zmar). The data also revealed Zostera marina, commonly known as eelgrass (seagrass), is the most abundant species in the area, resulting in a high oxygen content within the water samples. In turn, this helps establish an environment capable of sustaining high levels of biodiversity for this time of year and is a more efficient support ecosystem.

Details

Higher Education and SDG14: Life Below Water
Type: Book
ISBN: 978-1-83549-250-5

Keywords

Article
Publication date: 25 June 2024

Ifeyinwa Juliet Orji and Francis I. Ojadi

Extreme weather events are on the rise around the globe. Nevertheless, it is unclear how these extreme weather events have impacted the supply chain sustainability (SCS…

Abstract

Purpose

Extreme weather events are on the rise around the globe. Nevertheless, it is unclear how these extreme weather events have impacted the supply chain sustainability (SCS) framework. To this end, this paper aims to identify and analyze the aspects and criteria to enable manufacturing firms to navigate shifts toward SCS under extreme weather events.

Design/methodology/approach

The Best-Worst Method is deployed and extended with the entropy concept to obtain the degree of significance of the identified framework of aspects and criteria for SCS in the context of extreme weather events through the lens of managers in the manufacturing firms of a developing country-Nigeria.

Findings

The results show that extreme weather preparedness and economic aspects take center stage and are most critical for overcoming the risk of unsustainable patterns within manufacturing supply chains under extreme weather events in developing country.

Originality/value

This study advances the body of knowledge by identifying how extreme weather events have become a significant moderator of the SCS framework in manufacturing firms. This research will assist decision-makers in the manufacturing sector to position viable niche regimes to achieve SCS in the context of extreme weather events for expected performance gains.

Details

Business Process Management Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-7154

Keywords

Content available
Article
Publication date: 20 August 2024

Shanmukh Devarapali, Ashley Manske, Razieh Khayamim, Edwina Jacobs, Bokang Li, Zeinab Elmi and Maxim A. Dulebenets

This study aims to provide a comprehensive review of electric tugboat deployment in maritime transportation, including an in-depth assessment of its advantages and disadvantages…

Abstract

Purpose

This study aims to provide a comprehensive review of electric tugboat deployment in maritime transportation, including an in-depth assessment of its advantages and disadvantages. Along with the identification of advantages and disadvantages of electric tugboat deployment, the present research also aims to provide managerial insights into the economic viability of different tugboat alternatives that can guide future investments in the following years.

Design/methodology/approach

A detailed literature review was conducted, aiming to gain broad insights into tugboat operations and focusing on different aspects, including tugboat accidents and safety issues, scheduling and berthing of tugboats, life cycle assessment of diesel tugboats and their alternatives, operations of electric and hybrid tugboats, environmental impacts and others. Moreover, a set of interviews was conducted with the leading experts in the electric tugboat industry, including DAMEN Shipyards and the Port of Auckland. Econometric analyses were performed as well to evaluate the financial viability and economic performance of electric tugboats and their alternatives (i.e. conventional tugboats and hybrid tugboats).

Findings

The advantages of electric tugboats encompass decreased emissions, reduced operating expenses, improved energy efficiency, lower noise levels and potential for digital transformation through automation and data analytics. However, high initial costs, infrastructure limitations, training requirements and restricted range need to be addressed. The electric tugboat alternative seems to be the best option for scenarios with low interest rate values as increasing interest values negatively impact the salvage value of electric tugboats. It is expected that for long-term planning, the electric and hybrid tugboat alternatives will become preferential since they have lower annual costs than conventional diesel tugboats.

Practical implications

The outcomes of this research provide managerial insights into the practical deployment of electric tugboats and point to future research needs, including battery improvements, cost reduction, infrastructure development, legislative and regulatory changes and alternative energy sources. The advancement of battery technology has the potential to significantly impact the cost dynamics associated with electric tugboats. It is essential to do further research to monitor the advancements in battery technology and analyze their corresponding financial ramifications. It is essential to closely monitor the industry’s shift toward electric tugboats as their prices become more affordable.

Originality/value

The maritime industry is rapidly transforming and facing pressing challenges related to sustainability and digitization. Electric tugboats represent a promising and innovative solution that could address some of these challenges through zero-emission operations, enhanced energy efficiency and integration of digital technologies. Considering the potential of electric tugboats, the present study provides a comprehensive review of the advantages and disadvantages of electric tugboats in maritime transportation, extensive evaluation of the relevant literature, interviews with industry experts and supporting econometric analyses. The outcomes of this research will benefit governmental agencies, policymakers and other relevant maritime transportation stakeholders.

Details

Maritime Business Review, vol. 9 no. 3
Type: Research Article
ISSN: 2397-3757

Keywords

Article
Publication date: 7 August 2024

Yazid Aafif, Jérémie Schutz, Sofiene Dellagi, Anis Chelbi and Lahcen Mifdal

The purpose of this paper is to optimize the maintenance strategies for wind turbine (WT) gearboxes to minimize costs associated with PM actions, cooling, production loss and…

Abstract

Purpose

The purpose of this paper is to optimize the maintenance strategies for wind turbine (WT) gearboxes to minimize costs associated with PM actions, cooling, production loss and gearbox replacement. Two approaches, periodic imperfect maintenance and a novel design incorporating alternating gearboxes are compared to identify the most cost-effective solution.

Design/methodology/approach

This study employs mathematical modeling to analyze the design, operation and maintenance of WT gearboxes. Two maintenance strategies are investigated, involving periodic imperfect maintenance actions and the incorporation of two similar gearboxes operating alternately. The models determine optimal preventive maintenance (PM) and switching periods to minimize total expected costs over the operating time span.

Findings

The research findings reveal, for the considered case of a moroccan wind farm, that the use of two similar gearboxes operating alternately is more cost-effective than relying on a single gearbox. The mathematical models developed enable the determination and comparison of optimal strategies for various WT gearbox scenarios and associated maintenance costs.

Research limitations/implications

Limitations may arise from simplifications in the mathematical models and assumptions about degradation, temperature monitoring and maintenance effectiveness. Future research could refine the models and incorporate additional factors for a more comprehensive analysis.

Practical implications

Practically, the study provides insights into optimizing WT gearbox maintenance strategies, considering the trade-offs between PM actions, cooling, production loss and gearbox replacement costs. The findings can inform decisions on maintenance planning and design modifications to enhance cost efficiency.

Social implications

While the primary focus is on cost optimization, the study indirectly contributes to the broader societal goal of sustainable energy production. Efficient maintenance strategies for WTs help ensure reliable and cost-effective renewable energy, potentially benefiting communities relying on wind power.

Originality/value

This paper introduces two distinct strategies for WT gearbox maintenance, extending beyond traditional periodic maintenance. The incorporation of alternating gearboxes presents a novel design approach. The developed mathematical models offer a valuable tool for determining and comparing optimal strategies tailored to specific WT scenarios and associated maintenance costs.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

Expert briefing
Publication date: 12 July 2024

Egypt and Saudi Arabia are set to become the fourth and fifth nuclear generators. Russia and South Korea are MENA's dominant technology suppliers, but there is also opportunity…

Details

DOI: 10.1108/OXAN-DB288263

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 13 September 2024

Qiuhan Wang and Xujin Pu

This research proposes a novel risk assessment model to elucidate the risk propagation process of industrial safety accidents triggered by natural disasters (Natech), identifies…

Abstract

Purpose

This research proposes a novel risk assessment model to elucidate the risk propagation process of industrial safety accidents triggered by natural disasters (Natech), identifies key factors influencing urban carrying capacity and mitigates uncertainties and subjectivity due to data scarcity in Natech risk assessment.

Design/methodology/approach

Utilizing disaster chain theory and Bayesian network (BN), we describe the cascading effects of Natechs, identifying critical nodes of urban system failure. Then we propose an urban carrying capacity assessment method using the coefficient of variation and cloud BN, constructing an indicator system for infrastructure, population and environmental carrying capacity. The model determines interval values of assessment indicators and weights missing data nodes using the coefficient of variation and the cloud model. A case study using data from the Pearl River Delta region validates the model.

Findings

(1) Urban development in the Pearl River Delta relies heavily on population carrying capacity. (2) The region’s social development model struggles to cope with rapid industrial growth. (3) There is a significant disparity in carrying capacity among cities, with some trends contrary to urban development. (4) The Cloud BN outperforms the classical Takagi-Sugeno (T-S) gate fuzzy method in describing real-world fuzzy and random situations.

Originality/value

The present research proposes a novel framework for evaluating the urban carrying capacity of industrial areas in the face of Natechs. By developing a BN risk assessment model that integrates cloud models, the research addresses the issue of scarce objective data and reduces the subjectivity inherent in previous studies that heavily relied on expert opinions. The results demonstrate that the proposed method outperforms the classical fuzzy BNs.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 16 June 2023

Haider Jouma Touma, Muhamad Mansor, Muhamad Safwan Abd Rahman, Yong Jia Ying and Hazlie Mokhlis

This study aims to investigate the feasibility of proposed microgrid (MG) that comprises photovoltaic, wind turbines, battery energy storage and diesel generator to supply a…

84

Abstract

Purpose

This study aims to investigate the feasibility of proposed microgrid (MG) that comprises photovoltaic, wind turbines, battery energy storage and diesel generator to supply a residential building in Grindelwald which is chosen as the test location.

Design/methodology/approach

Three operational configurations were used to run the proposed MG. In the first configuration, the electric energy can be vended and procured utterly between the main-grid and MG. In the second configuration, the energy trade was performed within 15 kWh as the maximum allowable limit of energy to purchase and sell. In the third configuration, the system performance in the stand-alone operation mode was investigated. A whale optimization technique is used to determine the optimal size of MG in all proposed configurations. The cost of energy (COE) and other measures are used to evaluate the system performance.

Findings

The obtained results revealed that the first configuration is the most beneficial with COE of 0.253$/KWh and reliable 100%. Furthermore, the whale optimization algorithm is sufficiently feasible as compared to other techniques to apply in the applications of MG.

Originality/value

The value of the proposed research is to investigate to what extend the integration between MG and main-grid is beneficial economically and technically. As opposed to previous research studies that have focused predominantly only on the optimal size of MG.

Details

International Journal of Energy Sector Management, vol. 18 no. 4
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 7 December 2022

Fatemeh Mostafavi, Mohammad Tahsildoost, Zahra Sadat Zomorodian and Seyed Shayan Shahrestani

In this study, a novel framework based on deep learning models is presented to assess energy and environmental performance of a given building space layout, facilitating the…

Abstract

Purpose

In this study, a novel framework based on deep learning models is presented to assess energy and environmental performance of a given building space layout, facilitating the decision-making process at the early-stage design.

Design/methodology/approach

A methodology using an image-based deep learning model called pix2pix is proposed to predict the overall daylight, energy and ventilation performance of a given residential building space layout. The proposed methodology is then evaluated by being applied to 300 sample apartment units in Tehran, Iran. Four pix2pix models were trained to predict illuminance, spatial daylight autonomy (sDA), primary energy intensity and ventilation maps. The simulation results were considered ground truth.

Findings

The results showed an average structural similarity index measure (SSIM) of 0.86 and 0.81 for the predicted illuminance and sDA maps, respectively, and an average score of 88% for the predicted primary energy intensity and ventilation representative maps, each of which is outputted within three seconds.

Originality/value

The proposed framework in this study helps upskilling the design professionals involved with the architecture, engineering and construction (AEC) industry through engaging artificial intelligence in human–computer interactions. The specific novelties of this research are: first, evaluating indoor environmental metrics (daylight and ventilation) alongside the energy performance of space layouts using pix2pix model, second, widening the assessment scope to a group of spaces forming an apartment layout at five different floors and third, incorporating the impact of building context on the intended objectives.

Details

Smart and Sustainable Built Environment, vol. 13 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

Abstract

Details

Social Constructions of Migration in Nigeria and Zimbabwe: Discourse, Rhetoric, and Identity
Type: Book
ISBN: 978-1-83549-169-0

Keywords

1 – 10 of 34